Journal Article
Research Support, U.S. Gov't, Non-P.H.S.
Research Support, U.S. Gov't, P.H.S.
Add like
Add dislike
Add to saved papers

Processing of frequency-modulated sounds in the cat's posterior auditory field.

Single-neuron activity was recorded from the posterior auditory field (PAF) in the cortex of gas-anesthetized cats. Tone bursts and broadband complex sounds were used for auditory stimulation. Responses to frequency-modulated (FM) sounds, in particular, were studied systematically. Linear FM sweeps were centered around the best frequency (BF) of a neuron and had an excursion large enough to cover its whole frequency tuning range. Rate and direction of change of the FM sweeps were varied. In the majority of PAF neurons (75%) the FM response seemed not to be linear, i.e., their best instantaneous frequency (BIF) varied by more than one octave at different FM rates (FMR). When the difference between BIF and BF at each FMR was used as a measure of linearity, it was within one-third octave only at five or fewer FMR in most PAF neurons (74%). The majority of PAF neurons (70%) preferred moderate FM rates (<200 Hz/ms). Fifty-four percent of all neurons in this area showed band-pass behavior with a clear preference in the middle range of FM rates in at least one direction. Overall, neurons with high-pass behavior in both directions made up only a minor portion (22%) of PAF neurons. When both directions of an FM sweep (low-to-high and high-to-low frequency) were tested, 50% of the neurons were clearly selective for one direction, i.e., the response to one FM direction was at least twice as large as that to the other direction. This selectivity was not necessarily present at the preferred FM rate. In general, FM direction selectivity was equally distributed over FM rates tested. The selectivity of PAF neurons for the rate and direction of FM sounds makes these neurons suitable for the detection and analysis of communication sounds, which often contain FM components with a moderate sweep rate in a particular direction.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app