Add like
Add dislike
Add to saved papers

Synthesis of stress protein 70 (Hsp70) in rainbow trout (Oncorhynchus mykiss) red blood cells

Unlike enucleated mammalian red blood cells (rbcs), the nucleated rbcs of lower vertebrates are capable of protein synthesis and may, therefore, serve as a valuable model to investigate the adaptive significance of stress protein synthesis in cells. This study examined the synthesis of stress protein 70 (Hsp70) in rbcs of the temperature-sensitive rainbow trout Oncorhynchus mykiss in response to heat shock and anoxia. Through western blot analysis, we have demonstrated that rainbow trout rbcs synthesize Hsp70 both constitutively and in response to an increase in temperature. Radioisotopic labelling experiments indicated that the temperature at which Hsp70 synthesis was induced in fish acclimated to 10 °C was between 20 and 25 °C. Actinomycin D blocked de novo Hsp70 synthesis, implying that synthesis of Hsp70 is regulated at the level of transcription in rainbow trout rbcs. Since trout rbcs rely heavily on aerobic metabolism, but may also experience very low oxygen levels within the circulation, we also examined the relative importance of (1) anoxia as a stimulus for Hsp70 synthesis and (2) oxygen as a requirement for protein synthesis under control and heat-shock conditions. We found that trout rbcs were capable of protein synthesis during 2 h of anoxia, but did not increase Hsp70 synthesis. Moreover, rbcs subjected to combined anoxia and heat shock exhibited increases in Hsp70 synthesis that were similar in magnitude to those in cells exposed to heat shock alone. The latter results suggest that rainbow trout rbcs are (1) able to synthesize non-stress proteins during anoxia, (2) capable of tolerating periods of reduced oxygen availability without increased synthesis of stress proteins and (3) able to maintain the integrity of their heat-shock response even during periods of anoxia.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app