Add like
Add dislike
Add to saved papers

Proteomic Characterization of Undifferentiated Small Round Cell Sarcomas with EWSR1- and CIC::DUX4-Translocations Reveals Diverging Tumor Biology and Distinct Diagnostic Markers.

Modern Pathology 2024 May 4
Undifferentiated small round cell sarcomas of bone and soft tissue (USRS) are a group of tumors with heterogenic genomic alterations sharing similar morphology. In the present study, we performed a comparative large-scale proteomic analysis of USRS (n=42) with diverse genomic translocations including classic Ewing sarcomas with EWSR1::FLI1 fusions (n=24) or EWSR1::ERG - fusions (n=4), sarcomas with an EWSR1 - rearrangement (n=2), CIC::DUX4 fusion (n=8), as well as tumors classified as USRS with no genetic data available (n=4). Proteins extracted from formalin-fixed, paraffin-embedded (FFPE) pretherapeutic biopsies were analyzed qualitatively and quantitatively using shot gun mass spectrometry (MS). More than 8000 protein groups could be quantified using data-independent acquisition. Unsupervised hierarchical cluster analysis based on proteomic data allowed stratification of the 42 cases into distinct groups reflecting the different molecular genotypes. Protein signatures that significantly correlated with the respective genomic translocations were identified and used to generate a heatmap of all 42 sarcomas with assignment of cases with unknown molecular genetic data to either the EWSR1- or CIC-rearranged groups. MS-based prediction of sarcoma subtypes was molecularly confirmed in two cases where next-generation sequencing was technically feasible. MS also detected proteins routinely used in the immunohistochemical approach for the differential diagnosis of USRS. BCL11B highly expressed in Ewing sarcomas and Bach2 as well as ETS-1 highly expressed in CIC::DUX4-associated sarcomas, were among proteins identified by the present proteomic study and were chosen for immunohistochemical confirmation of MS data in our study cohort. Differential expression of these 3 markers in the two genetic groups were further validated in an independent cohort of n= 34 USRS. Finally, our proteomic results point towards diverging signaling pathways in the different USRS subgroups.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app