Add like
Add dislike
Add to saved papers

A New Methodology for the Oxygen Measurement in Lung Tissue of an Aged Ferret Model Proves Hypoxia During COVID-19.

Oxygen as a key element has a high impact on cellular processes. Infection with a pathogen such as SARS-CoV-2 and following inflammation may lead to hypoxic conditions in tissue that impact cellular responses. To develop optimized translational in vitro models for a better understanding of physiologic and pathophysiologic oxygen conditions, it is a prerequisite to determine oxygen levels generated in vivo . Our study objective was the establishment of an invasive method for oxygen measurements using a luminescence-based microsensor to determine the dissolved oxygen in the lung tissue of ferrets as animal models for SARS-CoV-2 research. In analogy to humans, aged ferrets are more likely to show clinical signs after SARS-CoV-2 infection compared to young animals. To investigate oxygen levels during a respiratory viral infection, we intratracheally infected nine aged (3-year-old) ferrets with SARS-CoV-2. The aged SARS-CoV-2 infected ferrets showed mild to moderate clinical signs associated with prolonged viral RNA shedding until 14 days post infection (dpi). SARS-CoV-2 infected ferrets showed histopathologic lung lesion scores that significantly negatively correlated with oxygen levels in lung tissue. At 4 dpi, oxygen levels in lung tissue were significantly lower (mean %O2 of 3.89 ≙ ≈ 27.78 mmHg) compared to the negative control group (mean %O2 of 8.65 ≙ ≈ 61.4 mmHg). In summary, we succeeded in determining the pathophysiologic oxygen conditions in the lung tissue of aged SARS-CoV-2-infected ferrets. This article is open access and distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives License 4.0 (https://creativecommons.org/licenses/by-nc-nd/4.0/). .

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app