Add like
Add dislike
Add to saved papers

Methyl-Jasmonate Functions as a Molecular Switch Promoting Cross-Talk between Pathways for the Biosynthesis of Isoprenoid Backbones Used to Modify Proteins in Plants.

In plants, the plastidial mevalonate (MVA)-independent pathway is required for the modification with geranylgeranyl groups of CaaL-motif proteins, which are substrates of protein geranylgeranyltransferase type-I (PGGT-I). As a consequence, fosmidomycin, a specific inhibitor of 1-deoxy-d-xylulose (DX)-5 phosphate reductoisomerase/DXR, the second enzyme in this so-called methylerythritol phosphate (MEP) pathway, also acts as an effective inhibitor of protein prenylation. This can be visualized in plant cells by confocal microscopy by expressing GFP-CaM-CVIL, a prenylation sensor protein. After treatment with fosmidomycin, the plasma membrane localization of this GFP-based sensor is altered, and a nuclear distribution of fluorescence is observed instead. In tobacco cells, a visual screen of conditions allowing membrane localization in the presence of fosmidomycin identified jasmonic acid methyl esther (MeJA) as a chemical capable of gradually overcoming inhibition. Using Arabidopsis protein prenyltransferase loss-of-function mutant lines expressing GFP-CaM-CVIL proteins, we demonstrated that in the presence of MeJA, protein farnesyltransferase (PFT) can modify the GFP-CaM-CVIL sensor, a substrate the enzyme does not recognize under standard conditions. Similar to MeJA, farnesol and MVA also alter the protein substrate specificity of PFT, whereas DX and geranylgeraniol have limited or no effect. Our data suggest that MeJA adjusts the protein substrate specificity of PFT by promoting a metabolic cross-talk directing the origin of the prenyl group used to modify the protein. MVA, or an MVA-derived metabolite, appears to be a key metabolic intermediate for this change in substrate specificity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app