Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Lineage tracing reveals a novel PDGFRβ + satellite cell subset that contributes to myo-regeneration of chronically injured rotator cuff muscle.

Scientific Reports 2024 April 27
Massive rotator cuff (RC) tendon tears are associated with progressive fibro-adipogenesis and muscle atrophy that altogether cause shoulder muscle wasting. Platelet derived growth factor β (PDGFRβ) lineage cells, that co-express PDGFRα have previously been shown to directly contribute to scar formation and fat accumulation in a mouse model of irreversible tendon and nerve transection (TTDN). Conversely, PDGFRβ+ lineage cells have also been  shown to be myogenic in cultures and in other models of skeletal muscle injury. We therefore hypothesized that PDGFRβ demarcates two distinct RC residing subpopulations, fibro-adipogenic and myogenic, and aimed to elucidate the identity of the PDGFRβ myogenic precursors and evaluate their contribution, if any, to RC myo-regeneration. Lineage tracing revealed increasing contribution of PDGFRβ+ myo-progenitors to the formation of GFP+ myofibers, which were the most abundant myofiber type in regenerated muscle at 2 weeks post-TTDN. Muscle regeneration preceded muscle atrophy and both advanced from the lateral site of tendon transection to the farthest medial region. GFP+ /PDGFRβ+ Sca-1- lin- CXCR4+ Integrin-β1+ marked a novel subset of satellite cells with confirmed myogenic properties. Further studies are warranted to identify the existence of PDGFRβ+ satellite cells in human and other mouse muscles and to define their myo-regenerative potential following acute and chronic muscle injury.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app