Add like
Add dislike
Add to saved papers

The role of iron-rich hydrosaline liquids in the formation of Kiruna-type iron oxide-apatite deposits.

Science Advances 2024 April 27
Kiruna-type iron oxide-apatite (IOA) deposits, an important source of iron, show close associations with andesitic subvolcanic intrusions. However, the processes of ore formation and the mechanism controlling iron concentration remain uncertain. Here, we report the widespread presence of high-temperature (>800°C) water-poor multisolid hydrosaline liquid inclusions in pre- and syn-ore minerals from IOA deposits of eastern China. These inclusions consistently homogenize to a liquid phase by vapor disappearance and mostly contain 3 to 10 wt % Fe, signifying a substantial capacity for iron transportation by such hydrosaline liquids. We propose that the hydrosaline liquids were likely immiscible from the dioritic magmas with high Cl/H2 O in subvolcanic settings. Subsequent reaction with host rocks and/or decompression and cooling of the hydrosaline liquids is deemed responsible for the simultaneous formation of high-temperature alteration and magnetite ores, thereby providing important insights into the distinctive characteristics of IOA deposits in shallow magmatic-hydrothermal systems.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app