Add like
Add dislike
Add to saved papers

Peculiarities of Emulsions Stabilized by Stimuli-Responsive Interpenetrating Polymeric Network Microgels.

Emulsions have become a crucial product form in various industries in modern times. Expanding the class of substances used to stabilize emulsions can improve their stability or introduce new properties. Particularly, the use of stimuli-responsive microgels makes it possible to create "smart" emulsions whose stability can be controlled by changing any of the specified stimuli. Thus, finding new ways to stabilize emulsions may broaden their application. In this work, for the first time, we applied microgels based on interpenetrating polymeric networks (IPNs) of poly( N -isopropylacrylamide) (PNIPAM) and poly(acrylic acid) (PAA) as stabilizing agents for "oil-in-water" emulsions. We have demonstrated that emulsions stabilized by such soft particles can remain colloidally stable for an extended period, even after being heated up to 40 °C, which is above the lower critical solution temperature (LCST) of PNIPAM. On the contrary, the emulsions stabilized by PNIPAM homopolymer microgels were broken upon heating. To understand the stabilization mechanism of the emulsions, mesoscopic computer simulations were performed to study the IPN microgels at the liquid-liquid interface. The simulations demonstrated that when the first subnetwork (PNIPAM) collapses, the particle adopts a flattened core-shell morphology with a highly swollen PAA-rich shell and a collapsed PNIPAM-rich core. Unlike its PNIPAM homopolymer counterpart, the IPN microgel maintains its three-dimensional shape, which provides stability to the microgel-based emulsions over a wide range of temperatures. Our combined findings could be useful in developing new approaches to emulsions' storage, biphasic catalysis, and lubrication of mechanisms in various operating and climatic conditions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app