Add like
Add dislike
Add to saved papers

The impact of differential transposition activities of autonomous and non-autonomous hAT transposable elements on genome architecture and gene expression in Caenorhabditis inopinata.

Genetics 2024 April 6
Transposable elements (TEs) are DNA sequences capable of moving within genomes and significantly influence genomic evolution. The nematode Caenorhabditis inopinata exhibits a much higher TE copy number than its sister species, C. elegans. In this study, we identified a novel autonomous TE belonging to the hAT superfamily from a spontaneous TE-insertion mutant in C. inopinata and named this transposon Ci-hAT1. Further bioinformatic analyses uncovered three additional autonomous hAT elements-Ci-hAT2, Ci-hAT3, and Ci-hAT4-along with over 1,000 copies of two non-autonomous miniature inverted-repeat transposable elements (MITEs), mCi-hAT1 and mCi-hAT4, likely derived from Ci-hAT1 and Ci-hAT4 through internal deletion. We tracked at least three sequential transpositions of Ci-hAT1 over several years. However, the transposition rates of the other three autonomous hAT elements were lower, suggesting varying activity levels. Notably, the distribution patterns of the two MITE families differed significantly: mCi-hAT1 was primarily located in the chromosome arms, a pattern observed in the TEs of other Caenorhabditis species, whereas mCi-hAT4 was more evenly distributed across chromosomes. Additionally, interspecific transcriptome analysis indicated that C. inopinata genes with upstream or intronic these MITE insertions tend to be more highly expressed than their orthologous genes in C. elegans. These findings highlight the significant role of de-silenced TEs in driving the evolution of genomes and transcriptomes, leading to species-specific genetic diversity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app