Add like
Add dislike
Add to saved papers

Low cycle number multiplex PCR: A novel strategy for the construction of amplicon libraries for next-generation sequencing.

Electrophoresis 2024 March 28
Multiplex PCR is a critical step when preparing amplicon library for next-generation sequencing. However, there are several challenges related to multiplex PCR including poor uniformity, nonspecific amplification, and primer-dimers. To address these issues, we propose a novel solution strategy that involves using a low cycle number (<10 cycles) in multiplex PCR and then employing carrier DNAs and magnetic beads for the selection of targeted products. This technique improves the amplicon uniformity while also reducing primer-dimers and PCR artifacts. To evaluate our technique, we initially utilized 120 DNA fragments from mouse genome containing single nucleotide polymorphism (SNP) sites. Sequencing results demonstrated that with only 7 cycles of multiplex PCR, 95.8% of the targeted SNP sites were mapped, with a coverage of at least 1×. The average sequencing depth of all amplicons was 1705.79 ± 1205.30×; 87% of them reached a coverage depth that exceeded 0.2-fold of the average sequencing depth. Our method had a greater uniformity (87%) when compared to Hi-Plex PCR (53.3%). Furthermore, we validated our strategy by randomly selecting 90 primer pairs twice from the initial set of 120 primer-pairs. Next, we used the same protocol to prepare amplicon libraries. The two groups had an average sequencing depth of 1013.30 ± 585.57× and 219.10 ± 158.27×, respectively; over 84% of the amplicons had a sequencing depth that exceeded 0.2-fold of average depth. These results suggest that the use of a low cycle number in multiplex PCR is a cost-effective and efficient approach for the preparation of amplicon libraries.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app