Add like
Add dislike
Add to saved papers

Drug Target Mendelian Randomization Study of PCSK9 and HMG-CoA Reductase Inhibition and Atrial Fibrillation.

Cardiology 2024 March 27
INTRODUCTION: Atrial fibrillation (AF) is a prevalent cardiac arrhythmia with significant clinical implications. The potential influence of lipid-lowering therapies, specifically PCSK9 inhibitors (PCSK9i) and HMG-CoA reductase inhibitors (statins), on AF risk remains a topic of interest. This Mendelian Randomization (MR) study aimed to elucidate the causal relationship between genetically predicted inhibition of PCSK9 and HMG-CoA reductase and the risk of AF.

METHODS: Utilizing publicly available, summary-level genome-wide association study (GWAS) data, we employed single-nucleotide polymorphisms (SNPs) associated with lower LDL-C levels as instruments for gene-simulated inhibition of PCSK9 and HMG-CoA reductase. Multiple MR techniques were applied to estimate the causal effects, and sensitivity analyses were conducted to validate the results.

RESULTS: Genetically predicted inhibition of PCSK9 demonstrated a reduced risk of AF, with an odds ratio (OR) of 0.92 (95% CI: 0.85 to 0.99, p=0.01) using the inverse variance weighted (IVW) method. In contrast, the inhibition of HMG-CoA reductase did not exhibit a statistically significant association with AF risk (IVW: OR = 1.11, 95% CI: 1.00-1.22, p = 0.05).

CONCLUSION: Our MR study suggests that genetically predicted inhibition of PCSK9, but not HMG-CoA reductase, is associated with a lower risk of AF. These findings provide evidence for a causal protective effect of PCSK9i on AF and support the use of PCSK9i for AF prevention in patients with dyslipidemia. Further studies are needed to elucidate the mechanisms underlying the differential effects of PCSK9i and statins on AF and to confirm the clinical implications of our findings.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app