Add like
Add dislike
Add to saved papers

Imaging Markers From Population-Wide, MRI-Based Automated Kidney Segmentation-an Analysis of Data From the German National Cohort (NAKO Gesundheitsstudie).

BACKGROUND: Population-wide research on potential new imaging biomarkers of the kidney depends on accurate automated segmentation of the kidney and its compartments (cortex, medulla, and sinus).

METHODS: We developed a robust deep-learning framework for kidney (sub-)segmentation based on a hierarchical, three-dimensional convolutional neural network (CNN) that was optimized for multi-scale problems of combined localization and segmentation. We applied the CNN to abdominal magnetic resonance images from the population-based German National Cohort (NAKO) study.

RESULTS: There was good to excellent agreement between the model predictions and manual segmentations. The median values for the body-surface normalized total kidney, cortex, medulla, and sinus volumes of 9934 persons were 158, 115, 43, and 24 mL/m2. Distributions of these markers are provided both for the overall study population and for a subgroup of persons without kidney disease or any associated conditions. Multivariable adjusted regression analyses revealed that diabetes, male sex, and a higher estimated glomerular filtration rate (eGFR) are important predictors of higher total and cortical volumes. Each increase of eGFR by one unit (i.e., 1 mL/min per 1.73 m2 body surface area) was associated with a 0.98 mL/m2 increase in total kidney volume, and this association was significant. Volumes were lower in persons with eGFR-defined chronic kidney disease.

CONCLUSION: The extraction of image-based biomarkers through CNN-based renal sub-segmentation using data from a population-based study yields reliable results, forming a solid foundation for future investigations.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app