Add like
Add dislike
Add to saved papers

Suppressing Ion Migration by Synergistic Engineering of Anion and Cation toward High-Performance Inverted Perovskite Solar Cells and Modules.

Advanced Materials 2024 March 27
Ion migration-induced intrinsic instability and large-area fabrication pose a tough challenge for the commercial deployment of perovskite photovoltaics. Herein, an interface heterojunction and metal electrode stabilization strategy is developed by suppressing ion migration via managing lead-based imperfections. After screening a series of cations and nonhalide anions, the ideal organic salt molecule dimethylammonium trifluoroacetate (DMATFA) consisting of dimethylammonium (DMA+ ) cation and trifluoroacetate (TFA- ) anion is selected to manipulate the surface of perovskite films. DMA+ enables the conversion of active excess and/or unreacted PbI2 into stable new phase DMAPbI3 , inhibiting photodecomposition of PbI2 and ion migration. Meanwhile, TFA- can suppress iodide ion migration through passivating undercoordinated Pb2+ and/or iodide vacancies. DMA+ and TFA- synergistically stabilize the heterojunction interface and silver electrode. The DMATFA-treated inverted perovskite solar cells and modules achieve a maximum efficiency of 25.03% (certified 24.65%, 0.1 cm2 ) and 20.58% (63.74 cm2 ), respectively, which is the record efficiency ever reported for the devices based on vacuum flash evaporation technology. The DMATFA modification results in outstanding operational stability, as evidenced by maintaining 91% of its original efficiency after 1520 h of maximum power point continuous tracking.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app