Read by QxMD icon Read

Advanced Materials

Peng Chen, Ling-Ling Ma, Wei Duan, Ji Chen, Shi-Jun Ge, Zhi-Han Zhu, Ming-Jie Tang, Ran Xu, Wei Gao, Tao Li, Wei Hu, Yan-Qing Lu
Cholesteric liquid crystal (CLC) chiral superstructures exhibit unique features; that is, polychromatic and spin-determined phase modulation. Here, a concept for digitalized chiral superstructures is proposed, which further enables the arbitrary manipulation of reflective geometric phase and may significantly upgrade existing optical apparatus. By encoding a specifically designed binary pattern, an innovative CLC optical vortex (OV) processor is demonstrated. Up to 25 different OVs are extracted with equal efficiency over a wavelength range of 116 nm...
January 15, 2018: Advanced Materials
Arda Kotikian, Ryan L Truby, John William Boley, Timothy J White, Jennifer A Lewis
Liquid crystal elastomers (LCEs) are soft materials capable of large, reversible shape changes, which may find potential application as artificial muscles, soft robots, and dynamic functional architectures. Here, the design and additive manufacturing of LCE actuators (LCEAs) with spatially programed nematic order that exhibit large, reversible, and repeatable contraction with high specific work capacity are reported. First, a photopolymerizable, solvent-free, main-chain LCE ink is created via aza-Michael addition with the appropriate viscoelastic properties for 3D printing...
January 15, 2018: Advanced Materials
Zhenghui Luo, Haijun Bin, Tao Liu, Zhi-Guo Zhang, Yankang Yang, Cheng Zhong, Beibei Qiu, Guanghao Li, Wei Gao, Dongjun Xie, Kailong Wu, Yanming Sun, Feng Liu, Yongfang Li, Chuluo Yang
A novel small molecule acceptor MeIC with a methylated end-capping group is developed. Compared to unmethylated counterparts (ITCPTC), MeIC exhibits a higher lowest unoccupied molecular orbital (LUMO) level value, tighter molecular packing, better crystallites quality, and stronger absorption in the range of 520-740 nm. The MeIC-based polymer solar cells (PSCs) with J71 as donor, achieve high power conversion efficiency (PCE), up to 12.54% with a short-circuit current (JSC ) of 18.41 mA cm-2 , significantly higher than that of the device based on J71:ITCPTC (11...
January 15, 2018: Advanced Materials
Jijian Xu, Dong Wang, Heliang Yao, Kejun Bu, Jie Pan, Jianqiao He, Fangfang Xu, Zhanglian Hong, Xiaobo Chen, Fuqiang Huang
Nano TiO2 is investigated intensely due to extraordinary photoelectric performances in photocatalysis, new-type solar cells, etc., but only very few synthesis and physical properties have been reported on nanostructured TiO or other low valent titanium-containing oxides. Here, a core-shell nanoparticle made of TiO core covered with a ≈5 nm shell of amorphous TiO1+x is newly constructed via a controllable reduction method to synthesize nano TiO core and subsequent soft oxidation to form the shell (TiO1+x )...
January 15, 2018: Advanced Materials
Gengsheng Weng, Srinivas Thanneeru, Jie He
New fluorochromic materials that reversibly change their emission properties in response to their environment are of interest for the development of sensors and light-emitting materials. A new design of Eu-containing polymer hydrogels showing fast self-healing and tunable fluorochromic properties in response to five different stimuli, including pH, temperature, metal ions, sonication, and force, is reported. The polymer hydrogels are fabricated using Eu-iminodiacetate (IDA) coordination in a hydrophilic poly(N,N-dimethylacrylamide) matrix...
January 15, 2018: Advanced Materials
Tengfei Li, Shuixing Dai, Zhifan Ke, Langxuan Yang, Jiayu Wang, Cenqi Yan, Wei Ma, Xiaowei Zhan
A fused tris(thienothiophene) (3TT) building block is designed and synthesized with strong electron-donating and molecular packing properties, where three thienothiophene units are condensed with two cyclopentadienyl rings. Based on 3TT, a fused octacylic electron acceptor (FOIC) is designed and synthesized, using strong electron-withdrawing 2-(5/6-fluoro-3-oxo-2,3-dihydro-1H-inden-1-ylidene)-malononitrile as end groups. FOIC exhibits absorption in 600-950 nm region peaked at 836 nm with extinction coefficient of up to 2 × 105 m-1 cm-1 , low bandgap of 1...
January 15, 2018: Advanced Materials
Li Li, Yichuan Guo, Yuping Sun, Long Yang, Liang Qin, Shouliang Guan, Jinfen Wang, Xiaohui Qiu, Hongbian Li, Yuanyuan Shang, Ying Fang
The capability to directly build atomically thin transition metal dichalcogenide (TMD) devices by chemical synthesis offers important opportunities to achieve large-scale electronics and optoelectronics with seamless interfaces. Here, a general approach for the chemical synthesis of a variety of TMD (e.g., MoS2 , WS2 , and MoSe2 ) device arrays over large areas is reported. During chemical vapor deposition, semiconducting TMD channels and metallic TMD/carbon nanotube (CNT) hybrid electrodes are simultaneously formed on CNT-patterned substrate, and then coalesce into seamless devices...
January 15, 2018: Advanced Materials
Yejing Dai, Xingfu Wang, Wenbo Peng, Cheng Xu, Changsheng Wu, Kai Dong, Ruiyuan Liu, Zhong Lin Wang
Cadmium sulfide (CdS) has received widespread attention as the building block of optoelectronic devices due to its extraordinary optoelectronic properties, low work function, and excellent thermal and chemical stability. Here, a self-powered flexible photodetector (PD) based on p-Si/n-CdS nanowires heterostructure is fabricated. By introducing the pyro-phototronic effect derived from wurtzite structured CdS, the self-powered PD shows a broadband response range, even beyond the bandgap limitation, from UV (325 nm) to near infrared (1550 nm) under zero bias with fast response speed...
January 15, 2018: Advanced Materials
Lin Liu, Ya-Xia Yin, Jin-Yi Li, Shu-Hua Wang, Yu-Guo Guo, Li-Jun Wan
The lithium metal anode has attracted soaring attention as an ideal battery anode. Unfortunately, nonuniform Li nucleation results in uncontrollable growth of dendritic Li, which incurs serious safety issues and poor electrochemical performance, hindering its practical applications. Herein, this study shows that uniform Li nucleation/growth can be induced by an ultralight 3D current collector consisting of in situ nitrogen-doped graphitic carbon foams (NGCFs) to realize suppressing dendritic Li growth at the nucleating stage...
January 15, 2018: Advanced Materials
Xiaoyun Qin, Dan Luo, Zhenjie Xue, Qian Song, Tie Wang
The low elastic modulus and time-consuming formation process represent the major challenges that impede the penetration of nanoparticle superstructures into daily life applications. As observed in the molecular or atomic crystals, more effective interactions between adjacent nanoparticles would introduce beneficial features to assemblies enabling optimized mechanical properties. Here, a straightforward synthetic strategy is showed that allows fast and scalable fabrication of 2D Ag-mercaptoalkyl acid superclusters of either hexagonal or lamellar topology...
January 15, 2018: Advanced Materials
Hui Li, Qi Li, Peng Wen, Trey B Williams, Shiba Adhikari, Chaochao Dun, Chang Lu, Dominique Itanze, Lin Jiang, David L Carroll, George L Donati, Pamela M Lundin, Yejun Qiu, Scott M Geyer
Highly efficient and stable electrocatalysts, particularly those that are capable of multifunctionality in the same electrolyte, are in high demand for the hydrogen evolution reaction (HER), oxygen evolution reaction (OER), and oxygen reduction reaction (ORR). In this work, highly monodisperse CoP and Co2 P nanocrystals (NCs) are synthesized using a robust solution-phase method. The highly exposed (211) crystal plane and abundant surface phosphide atoms make the CoP NCs efficient catalysts toward ORR and HER, while metal-rich Co2 P NCs show higher OER performance owing to easier formation of plentiful Co2 P@COOH heterojunctions...
January 15, 2018: Advanced Materials
Lee Belding, Bilge Baytekin, Hasan Tarik Baytekin, Philipp Rothemund, Mohit S Verma, Alex Nemiroski, Dan Sameoto, Bartosz A Grzybowski, George M Whitesides
This article describes a new principle for designing soft or 'semisoft' pneumatic actuators: SLiT (for SLit-in-Tube) actuators. Inflating an elastomeric balloon, when enclosed by an external shell (a material with higher Young's modulus) containing slits of different directions and lengths, produces a variety of motions, including bending, twisting, contraction, and elongation. The requisite pressure for actuation depends on the length of the slits, and this dependence allows sequential actuation by controlling the applied pressure...
January 15, 2018: Advanced Materials
Shaowei Shi, Xubo Liu, Yanan Li, Xuefei Wu, Dong Wang, Joe Forth, Thomas P Russell
Using the interfacial jamming of cellulose nanocrystal (CNC) surfactants, a new concept, termed all-liquid molding, is introduced to produce all-liquid objects that retain the shape and details of the mold with high fidelity, yet remain all liquid and are responsive to external stimuli. This simple process, where the viscosity of the CNC dispersion can range from that of water to a crosslinked gel, opens tremendous opportunities for encapsulation, delivery systems, and unique microfluidic devices. The process described is generally applicable to any functionalized nanoparticles dispersed in one liquid and polymer ligands having complementary functionality dissolved in a second immiscible liquid...
January 15, 2018: Advanced Materials
Baosong Li, Baojuan Xi, Zhenyu Feng, Yue Lin, Jincheng Liu, Jinkui Feng, Yitai Qian, Shenglin Xiong
Sodium-ion batteries (SIBs) are considered promising next-generation energy storage devices. However, a lack of appropriate high-performance anode materials has prevented further improvements. Here, a hierarchical porous hybrid nanosheet composed of interconnected uniform TiO2 nanoparticles and nitrogen-doped graphene layer networks (TiO2 @NFG HPHNSs) that are synthesized using dual-functional C3 N4 nanosheets as both the self-sacrificing template and hybrid carbon source is reported. These HPHNSs deliver high reversible capacities of 146 mA h g-1 at 5 C for 8000 cycles, 129 mA h g-1 at 10 C for 20 000 cycles, and 116 mA h g-1 at 20 C for 10 000 cycles, as well as an ultrahigh rate capability up to 60 C with a capacity of 101 mA h g-1 ...
January 15, 2018: Advanced Materials
Qingsen Zeng, Xiaoyu Zhang, Xiaolei Feng, Siyu Lu, Zhaolai Chen, Xue Yong, Simon A T Redfern, Haotong Wei, Haiyu Wang, Huaizhong Shen, Wei Zhang, Weitao Zheng, Hao Zhang, John S Tse, Bai Yang
Cesium-based trihalide perovskites have been demonstrated as promising light absorbers for photovoltaic applications due to their superb composition stability. However, the large energy losses (Eloss ) observed in inorganic perovskite solar cells has become a major hindrance impairing the ultimate efficiency. Here, an effective and reproducible method of modifying the interface between a CsPbI2 Br absorber and polythiophene hole-acceptor to minimize the Eloss is reported. It is demonstrated that polythiophene, deposited on the top of CsPbI2 Br, can significantly reduce electron-hole recombination within the perovskite, which is due to the electronic passivation of surface defect states...
January 15, 2018: Advanced Materials
Xiao-Hua Qin, Xiaopu Wang, Markus Rottmar, Bradley J Nelson, Katharina Maniura-Weber
Advanced hydrogel systems that allow precise control of cells and their 3D microenvironments are needed in tissue engineering, disease modeling, and drug screening. Multiphoton lithography (MPL) allows true 3D microfabrication of complex objects, but its biological application requires a cell-compatible hydrogel resist that is sufficiently photosensitive, cell-degradable, and permissive to support 3D cell growth. Here, an extremely photosensitive cell-responsive hydrogel composed of peptide-crosslinked polyvinyl alcohol (PVA) is designed to expand the biological applications of MPL...
January 15, 2018: Advanced Materials
Wenchao Huang, Pei Cheng, Yang Michael Yang, Gang Li, Yang Yang
Organic solar cells (OSCs) based on bulk heterojunction structures are promising candidates for next-generation solar cells. However, the narrow absorption bandwidth of organic semiconductors is a critical issue resulting in insufficient usage of the energy from the solar spectrum, and as a result, it hinders performance. Devices based on multiple-donor or multiple-acceptor components with complementary absorption spectra provide a solution to address this issue. OSCs based on multiple-donor or multiple-acceptor systems have achieved power conversion efficiencies over 12%...
January 15, 2018: Advanced Materials
Lvlv Ji, Cuncai Lv, Zuofeng Chen, Zhipeng Huang, Chi Zhang
Hydrogen is considered a promising energy carrier for replacing traditional fossil fuels. Electrochemical or solar-driven water splitting is a green and sustainable method of producing hydrogen. To lower the overpotential and minimize energy costs, numerous reports have focused on developing noble-metal-free catalysts for hydrogen production, with special attention paid to nickel-based materials. Herein, the current state of research on the use of Ni-based materials as electrocatalysts, cocatalysts, and photoactive materials in hydrogen production is reviewed...
January 15, 2018: Advanced Materials
Mohammad Taghinejad, Hossein Taghinejad, Zihao Xu, Yawei Liu, Sean P Rodrigues, Kyu-Tae Lee, Tianquan Lian, Ali Adibi, Wenshan Cai
The optical Kerr nonlinearity of plasmonic metals provides enticing prospects for developing reconfigurable and ultracompact all-optical modulators. In nanostructured metals, the coherent coupling of light energy to plasmon resonances creates a nonequilibrium electron distribution at an elevated electron temperature that gives rise to significant Kerr optical nonlinearities. Although enhanced nonlinear responses of metals facilitate the realization of efficient modulation devices, the intrinsically slow relaxation dynamics of the photoexcited carriers, primarily governed by electron-phonon interactions, impedes ultrafast all-optical modulation...
January 15, 2018: Advanced Materials
Rohit Saraf, Long Pu, Vivek Maheshwari
Organolead trihalide perovskite MAPbI3 shows a distinctive combination of properties such as being ferroelectric and semiconducting, with ion migration effects under poling by electric fields. The combination of its ferroelectric and semiconducting nature is used to make a light harvesting, self-powered tactile sensor. This sensor interfaces ZnO nanosheets as a pressure-sensitive drain on the MAPbI3 film and once poled is operational for at least 72 h with just light illumination. The sensor is monolithic in structure, has linear response till 76 kPa, and is able to operate continuously as the energy harvesting mechanism is decoupled from its pressure sensing mechanism...
January 15, 2018: Advanced Materials
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"