Add like
Add dislike
Add to saved papers

Inflammatory response in dairy cows caused by heat stress and biological mechanisms for maintaining homeostasis.

Climate change increases global temperatures, which is lethal to both livestock and humans. Heat stress is known as one of the various livestock stresses, and dairy cows react sensitively to high-temperature stress. We aimed to better understand the effects of heat stress on the health of dairy cows and observing biological changes. Individual cows were divided into normal (21-22 °C, 50-60% humidity) and high temperature (31-32 °C, 80-95% humidity), respectively, for 7-days. We performed metabolomic and transcriptome analyses of the blood and gut microbiomes of feces. In the high-temperature group, nine metabolites including linoleic acid and fructose were downregulated, and 154 upregulated and 72 downregulated DEGs (Differentially Expressed Genes) were identified, and eighteen microbes including Intestinimonas and Pseudoflavonifractor in genus level were significantly different from normal group. Linoleic acid and fructose have confirmed that associated with various stresses, and functional analysis of DEG and microorganisms showing significant differences confirmed that high-temperature stress is related to the inflammatory response, immune system, cellular energy mechanism, and microbial butyrate production. These biological changes were likely to withstand high-temperature stress. Immune and inflammatory responses are known to be induced by heat stress, which has been identified to maintain homeostasis through modulation at metabolome, transcriptome and microbiome levels. In these findings, heat stress condition can trigger alteration of immune system and cellular energy metabolism, which is shown as reduced metabolites, pathway enrichment and differential microbes. As results of this study did not include direct phenotypic data, we believe that additional validation is required in the future. In conclusion, high-temperature stress contributed to the reduction of metabolites, changes in gene expression patterns and composition of gut microbiota, which are thought to support dairy cows in withstanding high-temperature stress via modulating immune-related genes, and cellular energy metabolism to maintain homeostasis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app