Add like
Add dislike
Add to saved papers

Neuroprotective effect of green tea extract (-)-epigallocatechin-3-gallate in a preformed fibril-induced mouse model of Parkinson's disease.

Neuroreport 2024 March 9
Parkinson's disease (PD) is the second most common neurodegenerative disease characterized by the progressive degeneration of dopaminergic neurons in the substantia nigra (SN). The main bioactive component of green tea polyphenols (-)-epigallocatechin-3-gallate (EGCG) exerts protective effects against diseases such as neurodegenerative diseases and cancer. Therefore, this study investigated the effect of EGCG on the amelioration of neural damage in a chronic PD mouse model induced by α-synuclein preformed fibrils (α-syn-PFFs). A total of 20 C57BL/6J female mice were randomly divided into 3 groups: control group (saline, n = 6), model group (PFFs, n = 7), and prevention group (EGCG+PFFs, n = 7). A chronic PD mouse model was obtained by the administration of α-syn-PFFs by stereotaxic localization in the striatum. Behavioral tests were performed to evaluate PD-related anxiety-like behavior and motor impairments in the long-term PD progression. Tyrosine hydroxylase (TH) immuno-positive neurons and Ser129-phosphorylated α-syn (p-α-syn) were identified by immunohistochemistry. Pro-inflammatory and anti-inflammatory cytokines were measured by real-time quantitative PCR. EGCG pretreatment reduced anxiety-like behavior and motor impairments as revealed by the long-term behavioral test (2 weeks, 1 month, 3 months, and 6 months) on PD mice. EGCG also ameliorated PFF-induced degeneration of TH immuno-positive neurons and accumulation of p-α-syn in the SN and striatum at 6 months. Additionally, EGCG reduced the expression of pro-inflammatory cytokines while promoting the release of anti-inflammatory cytokines. EGCG exerts a neuroprotective effect on long-term progression of the PD model.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app