Add like
Add dislike
Add to saved papers

Effects of finger pinch motor imagery on short-latency afferent inhibition and corticospinal excitability.

Neuroreport 2024 March 9
Motor imagery is a cognitive process involving the simulation of motor actions without actual movements. Despite the reported positive effects of motor imagery training on motor function, the underlying neurophysiological mechanisms have yet to be fully elucidated. Therefore, the purpose of the present study was to investigate how sustained tonic finger-pinching motor imagery modulates sensorimotor integration and corticospinal excitability using short-latency afferent inhibition (SAI) and single-pulse transcranial magnetic stimulation (TMS) assessments, respectively. Able-bodied individuals participated in the study and assessments were conducted under two experimental conditions in a randomized order between participants: (1) participants performed motor imagery of a pinch task while observing a visual image displayed on a monitor (Motor Imagery), and (2) participants remained at rest with their eyes fixed on the monitor displaying a cross mark (Control). For each condition, sensorimotor integration and corticospinal excitability were evaluated during sustained tonic motor imagery in separate sessions. Sensorimotor integration was assessed by SAI responses, representing inhibition of motor-evoked potentials (MEPs) in the first dorsal interosseous muscle elicited by TMS following median nerve stimulation. Corticospinal excitability was assessed by MEP responses elicited by single-pulse TMS. There was no significant difference in the magnitude of SAI responses between motor imagery and Control conditions, while MEP responses were significantly facilitated during the Motor Imagery condition compared to the Control condition. These findings suggest that motor imagery facilitates corticospinal excitability, without altering sensorimotor integration, possibly due to insufficient activation of the somatosensory circuits or lack of afferent feedback during sustained tonic motor imagery.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app