Add like
Add dislike
Add to saved papers

Physiologic Effects of ECMO in Patients with Severe Acute Respiratory Distress Syndrome.

RATIONALE: Blood flow rate affects mixed venous oxygenation (SvO2 ) during venovenous extracorporeal membrane oxygenation (ECMO), with possible effects on the pulmonary circulation and the right heart function.

OBJECTIVES: We aimed at describing the physiologic effects of different levels of SvO2 obtained by changing ECMO blood flow, in patients with severe ARDS receiving ECMO and controlled mechanical ventilation.

METHODS: Low (SvO2 target 70-75%), intermediate (SvO2 target 75-80%) and high (SvO2 target > 80%) ECMO blood flows were applied for 30 minutes in random order in 20 patients. Mechanical ventilation settings were left unchanged. The hemodynamic and pulmonary effects were assessed with pulmonary artery catheter and electrical impedance tomography (EIT).

MEASUREMENTS AND MAIN RESULTS: Cardiac output decreased from low to intermediate and to high blood flow/SvO2 (9.2 [6.2-10.9] vs 8.3 [5.9-9.8] vs 7.9 [6.5-9.1] L/min, p = 0.014), as well as mean pulmonary artery pressure (34 ± 6 vs 31 ± 6 vs 30 ± 5 mmHg, p < 0.001), and right ventricle stroke work index (14.2 ± 4.4 vs 12.2 ± 3.6 vs 11.4 ± 3.2 g*m/beat/m2 , p = 0.002). Cardiac output was inversely correlated with mixed venous and arterial PO2 values (R2 = 0.257, p = 0.031 and R2 = 0.324, p = 0.05). Pulmonary artery pressure was correlated with decreasing mixed venous PO2 (R2 = 0.29, p <0.001) and with increasing cardiac output (R2 = 0.378 p < 0.007). Measures of ventilation/perfusion mismatch did not differ between the three steps.

CONCLUSIONS: In severe ARDS patients, increased ECMO blood flow rate resulting in higher SvO2 decreases pulmonary artery pressure, cardiac output, and right heart workload.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app