Add like
Add dislike
Add to saved papers

Constructing Sequential Type II Heterojunction CQDs/Bi 2 S 3 /TiNbO Photoanode with Superior Charge Transfer Capability Toward Stable Photoelectrochemical Water Splitting.

Efficient charge transfer and light-trapping units are pivotal prerequisites in the realm of Ti-based photoanode photoelectrochemical (PEC) water splitting. In this work, we successfully synthesized a ternary carbon quantum dots/Bi2 S3 quantum dots/Nb-doped TiO2 nanotube arrays (CQDs/Bi2 S3 /TiNbO) composite photoanode for PEC water splitting. CQDs/Bi2 S3 /TiNbO composite photoanode exhibited a considerably elevated photocurrent density of 8.80 mA cm-2 at 1.23 V vs the reversible hydrogen electrode, which was 20.00 times better than that of TiO2 (0.44 mA cm-2 ). Furthermore, the CQDs/Bi2 S3 /TiNbO composite photoanode attested to exceptional stability, maintaining 92.54% of its initial current after 5 h of stability measurement. Nb-doping boosted the electrical conductivity, facilitating charge transfer at the solid-liquid interface. Moderate amounts of Bi2 S3 quantum dots (QDs) and CQDs deposited on TiNbO provided abundant active sites for the electrolyte-photoanode interaction. Simultaneously, Bi2 S3 QDs and CQDs synergistically functioned as light-trapping units to broaden the light absorption range from 396 to 530 nm, stimulating increased carrier generation within the composite photoanode. In comparison with pristine TiO, CQDs/Bi2 S3 /TiNbO photoanodes possessed a superior ability to promote interfacial reactions. This study may provide a strategy for developing high-performance Ti-based photoanodes with efficient charge transfer and light trapping units for highly driving solar-to-hydrogen conversion.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app