Add like
Add dislike
Add to saved papers

Surfactant-induced alterations in optoelectronic properties of perylene diimide dyes: modulating sensing responses in the aqueous environment.

Soft Matter 2024 March 26
The compartmentalization effect of microheterogeneous systems, like surfactant aggregates, showcases altered optoelectronic properties of a perylene diimide-based chromogenic dye (PDI-Ala) compared to bulk water. The relatively hydrophobic microenvironment, poor hydration, and exceptionally large local concentration of dye molecules in the confined environment affect their interaction with target analytes. This realization intrigued us to investigate if micellization can modify the sensing properties (selectivity, sensitivity, response kinetics, output signal, etc. ) of the encapsulated dye molecules in the aqueous medium. Response comparisons of PDI-Ala to the ionic analyte (Fe3+ ) and biomolecule (heparin) in aqueous and surfactant-bound states highlighted significant variations. Fe3+ interaction exhibited a "turn-off" fluorescence response in a water medium, while surfactant-bound conditions triggered "turn-on" fluorescence, enhancing selectivity at the micelle-water interface. Conversely, the native probe showed no interaction with heparin in water but displayed a turn-on fluorescence response in cetyltrimethylammonium bromide (CTAB) micelles, indicating the transformation of a silent molecule into a turn-on fluorescence sensor. This study underscores the influence of micellar environments on dye molecules, altering the sensing responses and selectivity toward analytes, crucial for applications in understanding cellular pathways and toxicity mechanisms.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app