Journal Article
Review
Add like
Add dislike
Add to saved papers

Advancements in optical fiber-based wearable sensors for smart health monitoring.

Healthcare system is undergoing a significant transformation from a traditional hospital-centered to an individual-centered one, as a result of escalating chronic diseases, ageing populations, and ever-increasing healthcare costs,. Wearable sensors have become widely used in health monitoring systems since the COVID-19 pandemic. They enable continuous measurement of important health indicators like body temperature, wrist pulse, respiration rate, and non-invasive bio fluids like saliva and perspiration. Over the last few decades, the development has mostly concentrated on electrochemical and electrical wearable sensors. However, due to the drawbacks of such sensors, such as electronic waste, electromagnetic interference, non-electrical security, and poor performance, researchers are exhibiting a strong interest in optical principle-based systems. Fiber-based optical wearables are among the most promising healthcare systems because of advancements in high-sensitivity, durable, multiplexed sensing, and simple integration with flexible materials to improve wearability and simplicity. We present an overview of recent developments in optical fiber-based wearable sensors, focusing on two mechanisms: wavelength interrogation and intensity modulation for the detection of body temperature, pulse rate, respiration rate, body movements, and biomedical noninvasive fluids, with a thorough examination of their benefits and drawbacks. This review also focuses on improving working performance and application techniques for healthcare systems, including the integration of nanomaterials and the usage of the Internet of Things (IoT) with signal processing. Finally, the review concludes with a discussion of the future possibilities and problems for optical fiber-based wearables.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app