Read by QxMD icon Read

Biosensors & Bioelectronics

Mathias Reisbeck, Lukas Richter, Michael Johannes Helou, Stephan Arlinghaus, Birgit Anton, Ignas van Dommelen, Mario Nitzsche, Michael Baßler, Barbara Kappes, Oliver Friedrich, Oliver Hayden
Time-of-flight (TOF) magnetic sensing of rolling immunomagnetically-labeled cells offers great potential for single cell function analysis at the bedside in even optically opaque media, such as whole blood. However, due to the spatial resolution of the sensor and the low flow rate regime required to observe the behavior of rolling cells, the concentration range of such a workflow is limited. Potential clinical applications, such as testing of leukocyte function, require a cytometer which can cover a cell concentration range of several orders of magnitude...
March 12, 2018: Biosensors & Bioelectronics
Karteek Kadimisetty, Jinzhao Song, Aoife M Doto, Young Hwang, Jing Peng, Michael G Mauk, Frederic D Bushman, Robert Gross, Joseph N Jarvis, Changchun Liu
Molecular diagnostics that involve nucleic acid amplification tests (NAATs) are crucial for prevention and treatment of infectious diseases. In this study, we developed a simple, inexpensive, disposable, fully 3D printed microfluidic reactor array that is capable of carrying out extraction, concentration and isothermal amplification of nucleic acids in variety of body fluids. The method allows rapid molecular diagnostic tests for infectious diseases at point of care. A simple leak-proof polymerization strategy was developed to integrate flow-through nucleic acid isolation membranes into microfluidic devices, yielding a multifunctional diagnostic platform...
March 10, 2018: Biosensors & Bioelectronics
Shruti Shukla, Yuvaraj Haldorai, Vivek K Bajpai, Arunkumar Rengaraj, Seung Kyu Hwang, Xinjie Song, Myunghee Kim, Yun Suk Huh, Young-Kyu Han
A sensitive electrochemical immunosensing platform for the detection of Cronobacter sakazakii was developed using a graphene oxide/gold (GO/Au) composite. Transmission electron microscopy showed that the Au nanoparticles, with an average size of < 30 nm, were well dispersed on the GO surface. For the detection of C. sakazakii, a polyclonal anti-C. sakazakii antibody (IgG) was covalently immobilized to the Au nanoparticles on the surface of the GO/Au composite coated glassy carbon electrode (GCE). The electrochemical sensing performance of immunofunctionalized GCE was characterized by cyclic voltammetry and differential pulse voltammetry...
March 8, 2018: Biosensors & Bioelectronics
Yan-Mei Lei, Bai-Qi Xiao, Wen-Bin Liang, Ya-Qin Chai, Ruo Yuan, Ying Zhuo
It is well known that the conventional electrochemiluminescence (ECL) biosensor rely on the heterogeneous assay formats that involves the immobilization of biorecognition probe on the electrode surface before signal collection, which inevitably cause the efficiency of bio-recognition reactions to be limited owing to the existence of local steric hindrance. Herein, a robust, magnetic, and self-accelerated ECL nanosensor based on the multifunctionalized cobalt ferrite magnetite nanoparticles (CoFe2 O4 MNPs) was firstly designed for copper ion (Cu2+ ) detection in quasi-homogeneous system...
March 7, 2018: Biosensors & Bioelectronics
Xun Liu, Shang-Qing Zhang, Xing Wei, Ting Yang, Ming-Li Chen, Jian-Hua Wang
A novel core-shell structure optical pH sensor is developed with upconversion nanoparticles (UCNPs) serving as the core and silica as the shell, followed by grafting bovineserumalbumin (BSA) as another shell via glutaraldehyde cross-linking. The obtained core-shell-shell structure is shortly termed as UCNPs@SiO2 @BSA, and its surface provides a platform for loading various pH sensitive dyes, which are alike "modules" to make it feasible for measuring pHs within different pH ranges by simply regulating the type of dyes...
March 6, 2018: Biosensors & Bioelectronics
Sajal Shrivastava, Won-Il Lee, Nae-Eung Lee
A critical unmet need in the diagnosis of bacterial infections, which remain a major cause of human morbidity and mortality, is the detection of scarce bacterial pathogens in a variety of samples in a rapid and quantitative manner. Herein, we demonstrate smartphone-based detection of Staphylococcus aureus in a culture-free, rapid, quantitative manner from minimally processed liquid samples using aptamer-functionalized fluorescent magnetic nanoparticles. The tagged S. aureus cells were magnetically captured in a detection cassette, and then fluorescence was imaged using a smartphone camera with a light-emitting diode as the excitation source...
March 6, 2018: Biosensors & Bioelectronics
Zofia Iskierko, Krzysztof Noworyta, Piyush Sindhu Sharma
Molecular recognition, i.e., ability of one molecule to recognize another through weak bonding interactions, is one of the bases of life. It is often implemented to sensing systems of high merits. Preferential recognition of the analyte (guest) by the receptor (host) induces changes in physicochemical properties of the sensing system. These changes are measured by using suitable signal transducers. Because of possibility of miniaturization, fast response, and high sensitivity, field-effect transistors (FETs) are more frequently being used for that purpose...
March 6, 2018: Biosensors & Bioelectronics
Dawn M Mills, Christopher P Martin, Stephanie M Armas, Percy Calvo-Marzal, Dmitry M Kolpashchikov, Karin Y Chumbimuni-Torres
We report a label-free universal biosensing platform for highly selective detection of long nucleic acid strands. The sensor consists of an electrode-immobilized universal stem-loop (USL) probe and two adaptor strands that form a 4J structure in the presence of a specific DNA/RNA analyte. The sensor was characterized by electrochemical impedance spectroscopy (EIS) using K3 [Fe(CN)6 ]/K4 [Fe(CN)6 ] redox couple in solution. An increase in charge transfer resistance (RCT ) was observed upon 4J structure formation, the value of which depends on the analyte length...
March 6, 2018: Biosensors & Bioelectronics
Rongrong Huang, Nongyue He, Zhiyang Li
DNA has emerged as a promising biomaterial for assembling a variety of nanostructures based on its programmable base pairing. It also has other remarkable properties including stability, prominent biocompatibility, and can easily be modified with functional groups for further applications. In the past few decades, researchers have established various design rules and assembly technologies to improve the stability and complexity of DNA nanostructures. The detection of cancer-associated biomarkers has significant importance in identifying patients with different clinical stages and also in developing adaptive therapeutic strategies...
March 6, 2018: Biosensors & Bioelectronics
Jing Lu, Lin Wu, Yufang Hu, Sui Wang, Zhiyong Guo
In this study, a novel electrochemiluminescence (ECL) biosensor for sensitive detection of femtomolar miRNA-141 was constructed on the basis of Faraday cage-type strategy via graphene oxide (GO) and hybridization chain reaction (HCR)-assisted cascade amplification. A capture probe (CP) was immobilized on Fe3 O4 @SiO2 @Au nanoparticles as capture unit, which could catch the miRNA-141, and the immobilization of the signal unit (Ru(phen)3 2+ -HCR/GO) was allowed via nucleic acid hybridization. The prepared biosensor exhibited two advantages for signal amplification: firstly, GO could lap on the electrode surface directly, extending Outer Helmholtz Plane (OHP) of the sensor due to the large surface area and good electronic transport property; secondly, HCR-assisted cascade amplification was designed by anchoring all HCR products on the GO surface, then embedding Ru(phen)3 2+ as a signal readout pathway...
March 6, 2018: Biosensors & Bioelectronics
Zhiyong Yan, Feng Wang, Pingye Deng, Yu Wang, Kai Cai, Yanhui Chen, Zonghua Wang, Yang Liu
In this work, a novel and sensitive electrogenerated chemiluminescence (ECL) biosensor for protein kinase A (PKA) activity analysis and relevant inhibitor screening was proposed based on bimetallic catalysis signal amplification and recognition of Au and Pt nanoparticles loaded metal-organic frameworks (Au&Pt@UiO-66) nanocomposite. After being phosphorylated by PKA in the presence of ATP, Au&Pt@UiO-66 probes were specifically chelated to the modified electrode by forming Zr-O-P bonds between the surface defects of UiO-66 and the phosphorylated kemptide...
March 5, 2018: Biosensors & Bioelectronics
Juan Xiong, Meihua Hu, Xiaoping Li, Hongying Li, Xin Li, Xiang Liu, Guozhong Cao, Weishan Li
A porous graphite (PG) is proposed as anode electrocatalyst of microbial fuel cell (MFC), which is synthesized by thermally decomposing ferrous gluconate followed by leaching iron. The physical characterizations from scanning electron microscopy, Brunauer-Emmett-Teller, X-ray diffraction, Raman spectroscopy, Fourier transform infrared spectroscopy, energy-dispersive X-ray spectroscopy, and X-ray photoelectron spectroscopy, indicate that the resulting PG is mesopore-rich and exhibits high graphitization with oxygen-containing functional groups...
March 5, 2018: Biosensors & Bioelectronics
Edyta Matysiak-Brynda, Barbara Wagner, Michał Bystrzejewski, Ireneusz P Grudzinski, Anna M Nowicka
The way of immobilization of the monoclonal antibody (type IgG) on the electrode surface has a significant effect on the amount of the immobilized protein and in consequence on current signal of protein. Herein, we demonstrate that the application of appropriately functionalized phenyl film allowed us to control the orientation of the antibody (Ab) molecules on the electrode surface. The influence of Ab orientation on the efficiency of antigen-antibody interaction was tested with an example blood plasma protein (ferritin; Ft)...
March 5, 2018: Biosensors & Bioelectronics
Youmei Wang, Minghua Lu, Dianping Tang
A new photoluminescence (PL) enzyme immunoassay was designed for sensitive detection of aflatoxin B1 (AFB1 ) via an innovative enzyme substrate, 6-aza-2-thiothymine-stabilized gold nanocluster (AAT-AuNC) with L-arginine. The enzyme substrate with strong PL intensity was formed through supramolecular host-guest assembly between guanidine group of L-arginine and AAT capped on the surface of AuNC. Upon arginase introduction, the captured L-arginine was hydrolyzed into ornithine and urea, thus resulting in the decreasing PL intensity...
March 5, 2018: Biosensors & Bioelectronics
Hua Yu, Jing Han, Shangjie An, Gang Xie, Sanping Chen
Metal-organic frameworks (MOFs) as a new class of porous materials have attracted increasing attention in the field of biomimetic catalysis. This study firstly reports a mixed valence state Ce-MOF possessing intrinsic catalytic activity towards thionine (Thi), and its application in constructing an amplified electrochemical aptasensor for thrombin detection. As noticed, the novel catalytic process combines the advantages of 3D infinite extension of the Ce(III, IV)-MOF skeleton containing large amounts of catalytic sites and spontaneous recycling of the Ce(III)/Ce(IV) for electrochemical reduction of Thi, thereby presenting amplified electrochemical signals...
March 5, 2018: Biosensors & Bioelectronics
Junliang Han, Feifei Tong, Ping Chen, Xiancai Zeng, Zhengyong Duan
This paper used piezoelectric sensor to study the dysfunction of endothelial cell monolayer barrier caused by inflammatory factors. The biocompatible conductive polymer membrane of pPy[pGlu]-pLys was prepared on the surface of the ITO work electrode to improve the interface between the endothelial cell and the electrode. Both the impedance analysis data and the stable plateau stage of sensor's frequency shift indicated that endothelial cells formed a good monolayer barrier on this polymer surface. The response frequency shifts of lipopolysaccharide (LPS)- and histamine-induced endothelial barrier dysfunction were different, which distinguished their different stimulation mechanism...
March 2, 2018: Biosensors & Bioelectronics
Feriel Boussema, Andrew J Gross, Fatma Hmida, Brahim Ayed, Hatem Majdoub, Serge Cosnier, Abderrazak Maaref, Michael Holzinger
Two new inorganic-organic hybrid materials based on heteropolyoxometalates (POMs): (C4 H10 N)6 [P2 Mo18 O62 ]·4H2 O (P2 Mo18 ) and (C6 H8 NO)4 [H2 P2 W18 O62 ]·6H2 O (P2 W18 ) are reported as mediators for electron transfer between FAD-dependent glucose dehydrogenase (FAD-GDH) and a multiwalled carbon nanotube (MWCNT) matrix for glucose biofuel cell and biosensor applications. These polyoxometalates were chosen due to their promising redox behavior in a potential range for mediated electron transfer with the glucose oxidizing enzyme, FAD-GDH...
February 28, 2018: Biosensors & Bioelectronics
P J Lamas-Ardisana, G Martínez-Paredes, L Añorga, H J Grande
This paper describes a new approach for the massive production of electrochemical paper-based analytical devices (ePADs). These devices are fully fabricated by screen-printing technology and consist of a lineal microfluidic channel delimited by hydrophobic walls (patterned with diluted ultraviolet screen-printing ink in chromatographic paper grade 4) and a three-electrode system (printed with carbon and/or Ag/AgCl conductive inks). The printing process was characterised and optimized for pattern each layer with only one squeeze sweep...
February 28, 2018: Biosensors & Bioelectronics
Chengquan Wang, Jing Qian, Keqi An, Chanchan Ren, Xiaoting Lu, Nan Hao, Qian Liu, Henan Li, Xingyi Huang, Kun Wang
Aflatoxin B1 (AFB1), one of the most common mycotoxins in food matrixes, has been identified as the most toxic contaminant with mutagenic, teratogenic, immunosuppressive, and carcinogenic effects. In this work, a magnetically assembled aptasensing device has been designed for label-free determination of AFB1 by employing a disposable screen-printed carbon electrode (SPCE) covered with a designed polydimethylsiloxane (PDMS) film as the micro electrolytic cell. The magnetically controlled bio-probes were firstly prepared by immobilization of the thiolated aptamers on the Fe3 O4 @Au magnetic beads, which was rapidly assembled on the working electrode of SPCE within 10 s, by using a magnet placed at the opposite side...
February 28, 2018: Biosensors & Bioelectronics
Xing Xuan, Hyo S Yoon, Jae Y Park
In this study, a reduced graphene oxide (rGO)-based nanostructured composite working electrode of high quality was successfully microfabricated and micro-patterned on a flexible polyimide substrate using simple low-cost fabrication processes. Gold and platinum alloy nanoparticles were electrochemically deposited onto the microfabricated rGO surface and chitosan-glucose oxidase composites were integrated onto the modified surface of the working electrode to develop a human sweat-based wearable glucose sensor application...
February 27, 2018: Biosensors & Bioelectronics
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"