Read by QxMD icon Read

Biosensors & Bioelectronics

Giovanni Fusco, Francesca Gallo, Cristina Tortolini, Paolo Bollella, Federica Ietto, Antonella De Mico, Andrea D'Annibale, Riccarda Antiochia, Gabriele Favero, Franco Mazzei
In this work, we developed an impedimetric label-free immunosensor for the detection of 2,4-Dichlorophenoxy Acetic Acid (2,4-D) herbicide either in standard solution and spiked real samples. For this purpose, we prepared by electropolymerization a conductive polymer poly-(aniline-co-3-aminobenzoic acid) (PANABA) then we immobilized anti-2,4-D antibody onto a nanocomposite AuNPs-PANABA-MWCNTs employing the carboxylic moieties as anchor sites. The nanocomposite was synthesized by electrochemical polymerization of aniline and 3-aminobenzoic acid, in the presence of a dispersion of gold nanoparticles, onto a multi-walled carbon nanotubes-based screen printed electrode...
October 5, 2016: Biosensors & Bioelectronics
Inyoung Lee, Takashi Sode, Noya Loew, Wakako Tsugawa, Christopher Robin Lowe, Koji Sode
An ultimate goal for those engaged in research to develop implantable medical devices is to develop mechatronic implantable artificial organs such as artificial pancreas. Such devices would comprise at least a sensor module, an actuator module, and a controller module. For the development of optimal mechatronic implantable artificial organs, these modules should be self-powered and autonomously operated. In this study, we aimed to develop a microcontroller using the BioCapacitor principle. A direct electron transfer type glucose dehydrogenase was immobilized onto mesoporous carbon, and then deposited on the surface of a miniaturized Au electrode (7mm(2)) to prepare a miniaturized enzyme anode...
September 28, 2016: Biosensors & Bioelectronics
Mohsen Golabi, Filiz Kuralay, Edwin W H Jager, Valerio Beni, Anthony P F Turner
Biosensors can deliver the rapid bacterial detection that is needed in many fields including food safety, clinical diagnostics, biosafety and biosecurity. Whole-cell imprinted polymers have the potential to be applied as recognition elements in biosensors for selective bacterial detection. In this paper, we report on the use of 3-aminophenylboronic acid (3-APBA) for the electrochemical fabrication of a cell-imprinted polymer (CIP). The use of a monomer bearing a boronic acid group, with its ability to specifically interact with cis-diol, allowed the formation of a polymeric network presenting both morphological and chemical recognition abilities...
September 26, 2016: Biosensors & Bioelectronics
Lei Liu, Diming Zhang, Qian Zhang, Xing Chen, Gang Xu, Yanli Lu, Qingjun Liu
Volatile organic compounds (VOCs) detection is in high demand for clinic treatment, environment monitoring, and food quality control. Especially, VOCs from human exhaled breath can serve as significant biomarkers of some diseases, such as lung cancer and diabetes. In this study, a smartphone-based sensing system was developed for real-time VOCs monitoring using alternative current (AC) impedance measurement. The interdigital electrodes modified with zinc oxide (ZnO), graphene, and nitrocellulose were used as sensors to produce impedance responses to VOCs...
September 25, 2016: Biosensors & Bioelectronics
M Dominik, A Leśniewski, M Janczuk, J Niedziółka-Jönsson, M Hołdyński, Ł Wachnicki, M Godlewski, W J Bock, M Śmietana
This work discusses an application of titanium oxide (TiOx) thin films deposited using physical (reactive magnetron sputtering, RMS) and chemical (atomic layer deposition, ALD) vapour deposition methods as a functional coating for label-free optical biosensors. The films were applied as a coating for two types of sensors based on the localised surface plasmon resonance (LSPR) of gold nanoparticles deposited on a glass plate and on a long-period grating (LPG) induced in an optical fibre. Optical and structural properties of the TiOx thin films were investigated and discussed...
September 24, 2016: Biosensors & Bioelectronics
Liyan Zhang, Shuai Li, Minmin Dong, Yao Jiang, Ru Li, Shuo Zhang, Xiaoxia Lv, Lijun Chen, Hua Wang
A facile and efficient enzymatic reconstitution methodology has been proposed for high-catalysis peroxidase mimics by remolding the redox active centers of heme-containing proteins with the in-site biomineralized gold using hemoglobin (Hb) as a model. Catalytic hemin (Hem) was extracted from the active centers of Hb for the gold biomineralization and then reconstituted into apoHb to yield the Hem-Au@apoHb nanocomposites showing dramatically improved intrinsic catalysis and electrocatalysis over natural Hb and Hem...
September 22, 2016: Biosensors & Bioelectronics
Hanbing Rao, Min Chen, Hongwei Ge, Zhiwei Lu, Xin Liu, Ping Zou, Xianxiang Wang, Hua He, Xianyin Zeng, Yanying Wang
A novel molecularly imprinted electrochemical sensor for the rapid detection of melamine was reported in this paper. Glassy carbon electrode (GCE) was modified by Au and polyaniline composites (Au@PANI) deposited on the surface of GCE and were used to increase the electrode sensitivity and to amplify the sensor signal. Melamine template molecule was further assembled onto Au@PANI by the formation of hydrogen bonds, can implement the selective detection of melamine. This simple but efficient electrochemistry analysis platform presents a low detection limit of 1...
September 22, 2016: Biosensors & Bioelectronics
Salzitsa Anastasova, Blair Crewther, Pawel Bembnowicz, Vincenzo Curto, Henry Md Ip, Bruno Rosa, Guang-Zhong Yang
In sport, exercise and healthcare settings, there is a need for continuous, non-invasive monitoring of biomarkers to assess human performance, health and wellbeing. Here we report the development of a flexible microfluidic platform with fully integrated sensing for on-body testing of human sweat. The system can simultaneously and selectively measure metabolite (e.g. lactate) and electrolytes (e.g. pH, sodium) together with temperature sensing for internal calibration. The construction of the platform is designed such that continuous flow of sweat can pass through an array of flexible microneedle type of sensors (50µm diameter) incorporated in a microfluidic channel...
September 21, 2016: Biosensors & Bioelectronics
Jun Xu, Xiaoke Shen, Lei Jia, Mingming Zhang, Tao Zhou, Yukun Wei
Since bacterial spores, such as Bacillus anthracis spores, are extremely hazardous to human beings and animals, efforts have focused on the development of bacterial spore detector with rapid response and high selectivity and sensitivity. Therefore, we reported a facile one-step chelating-reagent-assisted hydrothermal synthesis of lanthanide-doped fluorapatite (FA) nanoprobes for detecting the biomarker of bacterial spores. In FA synthesis, ethylenediaminetetraacetic acid (EDTA) can serve not only as a shape controller and a stabilizer but also as a chelating reagent for lanthanide ions...
September 21, 2016: Biosensors & Bioelectronics
Maxime Huet, Myriam Cubizolles, Arnaud Buhot
The process of agglutination is commonly used for the detection of biomarkers like proteins or viruses. The multiple bindings between micrometer sized particles, either latex beads or red blood cells (RBCs), create aggregates that are easily detectable and give qualitative information about the presence of the biomarkers. In most cases, the detection is made by simple naked-eye observation of agglutinates without any access to the kinetics of agglutination. In this study, we address the development of a real-time time observation of RBCs agglutination...
September 20, 2016: Biosensors & Bioelectronics
Feiyue Zhang, Xiaowen Liang, Wenzhu Zhang, Yong-Lei Wang, Haolu Wang, Yousuf H Mohammed, Bo Song, Run Zhang, Jingli Yuan
Although hypochlorous acid (HOCl) has long been associated with a number of inflammatory diseases in mammalian bodies, the functions of HOCl in specific organs at abnormal conditions, such as liver injury, remain unclear due to its high reactivity and the lack of effective methods for its detection. Herein, a unique Ir(III) complex-based chemosensor, Ir-Fc, was developed for highly sensitive and selective detection of HOCl. Ir-Fc was designed by incorporating a ferrocene (Fc) quencher to a Ir(III) complex through a HOCl-responsive linker...
September 20, 2016: Biosensors & Bioelectronics
Min-Qiang Wang, Cui Ye, Shu-Juan Bao, Mao-Wen Xu, Yan Zhang, Ling Wang, Xiao-Qing Ma, Jun Guo, Chang-Ming Li
Monitoring superoxide anion radicals in living cells has been attracting much academic and industrial interest due to the dual roles of the radicals. Herein, we synthesized a novel nanostructured cobalt phosphate nanorods (Co3(PO4)2 NRs) with tunable pore structure using a simple and effective micro-emulsion method and explored their potential utilization in the electrochemical sensing of superoxide anions. As an analytical and sensing platform, the nanoscale biomimetic enzymes Co3(PO4)2 NRs exhibited excellent selectivity and sensitivity towards superoxide anion (O2(•-)) with a low detection limit (2...
September 20, 2016: Biosensors & Bioelectronics
Jiamian Wang, Xiuyun Wang, Shuo Wu, Ruping Che, Pinchen Luo, Changgong Meng
A facile label-free sensing method is developed for the one-step and highly sensitive fluorescent detection of DNA, which couples the specific C-C mismatch bonding and fluorescent quenching property of a trimethyl-substituted naphthyridine dye (ATMND) with the exonuclease III (Exo III) assisted cascade target recycling amplification strategy. In the absence of target DNA, the DNA hairpin probe with a C-C mismatch in the stem and more than 4 bases overhung at the 3' terminus could entrap and quench the fluorescence of ATMND and resist the digestion of Exo III, thus showing a low fluorescence background...
September 20, 2016: Biosensors & Bioelectronics
Mashooq Khan, Soo-Young Park
We developed a new technology that uses backscattering interferometry (BSI) to quantitatively measure nematic liquid crystal (NLC)-based biosensors, those usually relied on texture reading for on/off signals. The LC-based BSI comprised an octadecyltrichlorosilane (OTS)-coated square capillary filled with 4-cyano-4'-pentylbiphenyl (5CB, a nematic LC at room temperature). The LC/water interface in the capillary was functionalized by a coating of poly(acrylicacid-b-4-cyanobiphenyl-4'-oxyundecylacrylate) (PAA-b-LCP) and immobilized with the enzymes glucose oxidase (GOx) and horseradish peroxidase (HRP) through covalent linkage to the PAA chains (5CBPAA-GOx:HRP) for glucose detection...
September 20, 2016: Biosensors & Bioelectronics
Yunqing Liu, Erhu Xiong, Xiaoyu Li, Junjing Li, Xiaohua Zhang, Jinhua Chen
Taking TdT-mediated hemin/G-quadruplex DNAzyme nanowires as NADH oxidase and HRP-mimicking DNAzyme, a novel DNA-based electrochemical method has been developed for sensitive and selective assay of alkaline phosphatase (AP) activity. The double-stranded DNA (dsDNA) probe consisted of thiol-functionalized DNA1 and 3'-phosphorylated DNA2, was immobilized on a gold nanoparticles (AuNPs) modified glassy carbon (GC) electrode. In the presence of AP, 3'-phosphoryl end of DNA2 was dephosphorylated. Terminal deoxynucletidyl transferase (TdT) catalyzed the sequential addition of deoxynucleotides (dTTPs) at 3'-OH end of DNA2 to extend DNA2 with a poly-T sequence...
September 20, 2016: Biosensors & Bioelectronics
María Díaz-González, J Pablo Salvador, Diana Bonilla, M Pilar Marco, César Fernández-Sánchez, Antonio Baldi
No abstract text is available yet for this article.
September 19, 2016: Biosensors & Bioelectronics
Bhavna Sikarwar, Virendra V Singh, Pushpendra K Sharma, Ashu Kumar, Duraipandian Thavaselvam, Mannan Boopathi, Beer Singh, Yogesh K Jaiswal
Surface plasmon resonance (SPR) immunosensor using 4-mercaptobenzoic acid (4-MBA) modified gold (4-MBA/Au) SPR chip was developed first time for the detection of Brucella melitensis (B. melitensis) based on the screening of its complementary DNA target by using two different newly designed DNA probes of IS711 gene. Herein, interaction between DNA probes and target molecule are also investigated and result revealed that the interaction is spontaneous. The kinetics and thermodynamic results derived from the experimental data showed that the interaction between complementary DNA targets and probe 1 is more effective than that of probe 2...
September 18, 2016: Biosensors & Bioelectronics
Abbas Afkhami, Pegah Hashemi, Hasan Bagheri, Jafar Salimian, Ali Ahmadi, Tayyebeh Madrakian
In this work, a novel nanocomposite film consisting of the Au nanoparticles/graphene-chitosan has been designed to construct an impedimetric immunosensor for a rapid and sensitive immunoassay of botulinum neurotoxin A (BoNT/A). BoNT/A antibody was immobilized on glassy carbon electrode modified with Au nanoparticles/graphene-chitosan for the signal amplification. The fabrication of immunosensor was extensively characterized by using transmission electron microscopy (TEM), scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray diffraction (XRD), Fourier transform infrared (FTIR), cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS)...
September 18, 2016: Biosensors & Bioelectronics
Rajeev Ranjan, Elena N Esimbekova, Valentina A Kratasyuk
The present review critically discusses the latest developments in the field of smart diagnostic systems for cancer biomarkers. A wide coverage of recent biosensing approaches involving aptamers, enzymes, DNA probes, fluorescent probes, interacting proteins and antibodies in vicinity to transducers such as electrochemical, optical and piezoelectric is presented. Recent advanced developments in biosensing approaches for cancer biomarker owes much credit to functionalized nanomaterials due to their unique opto-electronic properties and enhanced surface to volume ratio...
September 18, 2016: Biosensors & Bioelectronics
Diego Voccia, Marta Sosnowska, Francesca Bettazzi, Giuseppina Roscigno, Emiliano Fratini, Vittorio De Franciscis, Gerolama Condorelli, Raghu Chitta, Francis D'Souza, Wlodzimierz Kutner, Ilaria Palchetti
Herein, direct determination of small RNAs is described using a functional-polymer modified genosensor. The analytical strategy adopted involves deposition by electropolymerization of biotinylated polythiophene films on the surface of miniaturized, disposable, gold screen-printed electrodes, followed by the layer-by-layer deposition of streptavidin, and then biotynilated capture probes. A small RNA (miR-221) target was determined via the impedimetric measurement of the hybridization event in a label-free and PCR-free approach...
September 17, 2016: Biosensors & Bioelectronics
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"