Add like
Add dislike
Add to saved papers

Engineering Metallic Alloy Electrode for Robust and Active Water Electrocatalysis with Large Current Density Exceeding 2000 mA cm -2 .

Advanced Materials 2024 March 23
The amelioration of brilliantly effective electrocatalysts working at high current density for the oxygen evolution reaction (OER) is imperative for cost-efficient electrochemical hydrogen production. Yet, the kinetically sluggish and unstable catalysts remain elusive to large-scale hydrogen (H2 ) generation for industrial applications. Herein, a new strategy is demonstrated to significantly enhance the intrinsic activity of Ni1-x Fex nanochain arrays through a trace proportion of heteroatom phosphorus doping that permits robust water splitting at an extremely large current density of 1000 and 2000 mA cm-2 for 760 h. The in situ formation of Ni2 P and Ni5 P4 on Ni1-x Fex nanochain arrays surface and hierarchical geometry of the electrode significantly promote the reaction kinetics and OER activity. The OER electrode provides exceptionally low overpotentials of 222 and 327 mV at current densities of 10 and 2000 mA cm-2 in alkaline media, dramatically lower than benchmark IrO2 and is among the most active catalysts yet reported. Remarkably, the alkaline electrolyzer renders a low voltage of 1.75 V at a large current density of 1000 mA cm-2 , indicating outperformed overall water splitting. The electrochemical fingerprints demonstrate vital progress toward large-scale H2 production for industrial water electrolysis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app