Add like
Add dislike
Add to saved papers

Bone morphogenetic protein-2 loaded triple helix recombinant collagen-based hydrogels for enhancing bone defect healing.

Biomedical Materials 2024 March 23
The development of efficacious bone substitute biomaterials remains a major challenge for research and clinical surgical. Herein, we constructed triple helix recombinant collagen -based hydrogels loading bone morphogenetic protein-2 (BMP-2) to stimulate bone regeneration in cranial defects. A series of in situ forming hydrogels, denoted as THRC-OCMC-NSC hydrogels, was synthesized via a Schiff base reaction involving oxidized carboxymethylcellulose (OCMC), triple helix recombinant collagen (THRC) and N-succinyl-chitosan (NSC). The hydrogels underwent rapid formation under physiological pH and temperature conditions. The composite hydrogel exhibits a network structure characterized by uniform pores, the dimensions of which can be tuned by varying THRC concentrations. The THRC-OCMC-NSC and THRC-OCMC-NSC-BMP2 hydrogels display heightened mechanical strength, substantial biodegradability, and lower swelling properties. The THRC-OCMC-NSC hydrogels show exceptional biocompatibility and bioactivity, accelerating cell proliferation, adhesion, and differentiation. Magnetic resonance imaging (MRI), computed tomography (CT) and histological analysis of rat cranial defects models revealed that the THRC-OCMC-NSC-BMP2 hydrogels substantially promote new bone formation and expedite bone regeneration. The novel THRC-OCMC-NSC-BMP2 hydrogels emerge as promising candidates for bone substitutes, demonstrating substantial potential in bone repair and regeneration applications.&#xD.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app