Read by QxMD icon Read

Biomedical Materials

Erlin Zhang, Jing Ren, Shengyi Li, Lei Yang, Gaowu Qin
Ti-Cu sintered alloys have shown good antibacterial abilities. However, the sintered method (powder metallurgy) is not convenient to produce devices with a complex structure. In this paper, Ti-Cu alloys with 2.0, 3.0 and 4.0 wt.% Cu were prepared in an arc melting furnace and subjected to different heat treatments: solid solution and ageing, to explore the possibility of preparing an antibacterial Ti-Cu alloy by a casting method and to examine the effect of Cu content. Phase identification was conducted on an XRD diffraction meter, and the microstructure was observed by a metallographic microscope, a scanning electron microscope (SEM) with energy disperse spectroscopy (EDS) and transmission electron microscopy (TEM)...
October 21, 2016: Biomedical Materials
Kedong Song, Wenfang Li, Hai Wang, Yu Zhang, Liying Li, Yiwei Wang, Hong Wang, Ling Wang, Tianqing Liu
Biological treatment using engineered osteochondral composites has received growing attention for the repair of cartilage defects. Osteochondral composites combined with a dynamic culture provide great potential for improving the quality of constructs and cartilage regeneration as dynamic conditions mimic the in vivo condition where cells were constantly subjected to mechanical and chemical stimulation. In the present study, biophasic composites were produced in vitro consisting of cell-hydrogel (CH) and cell-cancellous bone (CB) constructs, followed by culturing in a dynamic system in a spinner flask...
October 21, 2016: Biomedical Materials
Juan P Cattalini, Judith Roether, Alexander Hoppe, Fatemeh Pishbin, Luis Haro Durand, Alejandro Gorustovich, Aldo R Boccaccini, Silvia Lucangioli, Viviana Mouriño
Novel multifunctional nanocomposite scaffolds made of nanobioactive glass and alginate crosslinked with therapeutic ions such as calcium and copper were developed for delivering therapeutic agents, in a highly controlled and sustainable manner, for bone tissue engineering. Alendronate, a well-known antiresorptive agent, was formulated into microspheres under optimized conditions and effectively loaded within the novel multifunctional scaffolds with a high encapsulation percentage. The size of the cation used for the alginate crosslinking impacted directly on porosity and viscoelastic properties, and thus, on the degradation rate and the release profile of copper, calcium and alendronate...
October 21, 2016: Biomedical Materials
Jiayin Fu, Changjiang Fan, Wei Shan Lai, Dongan Wang
The transport of nutrients and oxygen by vascular networks into engineered tissue constructs is critical to their successful integration into host tissues. Hydrogel has achieved some promising results as scaffolds for vascularization. However, the vascularization of hydrogel is still constrained by its inherent submicron- or nano-sized pores. In this study, two gelatin-based micro-cavitary gel (Gel-MCG) constructs with varying densities of micro-cavities were developed with a photocrosslinkable gelatin methacrylate (Gel-MA) precursor and porogenic gelatin microspheres (MS), and their functions in supporting vascularization within hydrogels were evaluated with endothelial progenitor outgrowth cells (EPOCs)...
October 7, 2016: Biomedical Materials
Jinyu Li, Qin Wang, Wei Zhi, Jianxin Wang, Bo Feng, Shuxin Qu, Yandong Mu, Jie Weng
Porous hydroxyapatite (HA) scaffolds combined with a drug delivery system have attracted much attention for bone tissue engineering. In this study, an easy and highly efficient method was developed to immobilize salvianolic acid B (Sal B)-loaded chitosan (CS) microspheres three dimensionally and homogeneously on the surface of HA scaffolds pre-coated with alginate. Porous HA scaffolds were prepared via a template-leaching process and CS microspheres (used as drug carriers) were fabricated by an emulsion method...
October 7, 2016: Biomedical Materials
Elham Babaie, Boren Lin, Vijay K Goel, Sarit B Bhaduri
This paper reports for the first time the development of a biodegradable, non-exothermic, self-setting orthopedic cement composition based on amorphous magnesium phosphate (AMP). The occurrence of undesirable exothermic reactions was avoided through using AMP as the solid precursor. The phenomenon of self-setting with optimum rheology is achieved by incorporating a water soluble biocompatible/biodegradable polymer, polyvinyl alcohol (PVA). Additionally, PVA enables a controlled growth of the final phase via a biomimetic process...
October 7, 2016: Biomedical Materials
Fátima Bensiamar, Beatriz Olalde, Sandra C Cifuentes, Nerea Argarate, Garbiñe Atorrasagasti, José L González-Carrasco, Eduardo García-Rey, Nuria Vilaboa, Laura Saldaña
We developed biodegradable polymeric coatings loaded with increasing amounts of dexamethasone on composites based on polylactic acid and Mg particles for bone repair. Incorporation of Mg particles into the polymeric matrix improves the compressive behaviour of the polymer. Mg-containing composites release Mg(2+) ions into the culture medium and improve mesenchymal stem cell (MSC) viability, enhance their osteogenic potential and promote the release of angiogenic factors. Dexamethasone-loaded coatings deposited on composites delay Mg(2+) ion dissolution while releasing controlled amounts of the drug, which are highly dependent on initial payload...
October 7, 2016: Biomedical Materials
J-Y Won, C-Y Park, J-H Bae, G Ahn, C Kim, D-H Lim, D-W Cho, W-S Yun, J-H Shim, J-B Huh
Here, we compared 3D-printed polycaprolactone/poly(lactic-co-glycolic acid)/β-tricalcium phosphate (PCL/PLGA/β-TCP) membranes with the widely used collagen membranes for guided bone regeneration (GBR) in beagle implant models. For mechanical property comparison in dry and wet conditions and cytocompatibility determination, we analyzed the rate and pattern of cell proliferation of seeded fibroblasts and preosteoblasts using the cell counting kit-8 assay and scanning electron microscopy. Osteogenic differentiation was verified using alizarin red S staining...
October 7, 2016: Biomedical Materials
S Vigneswari, V Murugaiyah, G Kaur, H P S Abdul Khalil, A A Amirul
Polyhydroxyalkanoate (PHA) is a microbial polymer that has been at the forefront of many attempts at tissue engineering. However, the surface of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) (P(3HB-co-4HB)) is hydrophobic with few recognition sites for cell attachment. Various concentrations of fish-scale collagen peptides (FSCPs) were incorporated into P(3HB-co-4HB) copolymer by aminolysis. Later, FSCPs were introduced onto the aminolyzed P(3HB-co-4HB) scaffolds. Introduction of the FSCP groups was verified using Fourier transform infrared spectroscopy and the ninhydrin method...
October 6, 2016: Biomedical Materials
Shubham Jain, Sai Rama Krishna Meka, Kaushik Chatterjee
Curcumin is a phenolic compound isolated from Curcuma longa that is known to exhibit wide ranging biological activity including potential benefits for bone growth. The aim of this work was to engineer curcumin eluting tissue scaffolds and investigate their potential use in bone tissue regeneration. We prepared curcumin loaded poly(ε-caprolactone) (PCL) nanofibers by electrospinning. Morphological characterization of the nanofibers revealed that the average diameter of neat fibers and that of fibers with 1 wt% and 5 wt% curcumin is 840  ±  130 nm, 827  ±  129 nm and 680  ±  110 nm, respectively...
October 6, 2016: Biomedical Materials
Vipuil Kishore, Ranjani Iyer, Athela Frandsen, Thuy-Uyen Nguyen
Loss of vision due to corneal disease is a significant problem worldwide. Transplantation of donor corneas is a viable treatment option but limitations such as short supply and immune-related complications call for alternative options for the treatment of corneal disease. A tissue engineering-based approach using a collagen scaffold is a promising alternative to develop a bioengineered cornea that mimics the functionality of native cornea. In this study, an electrochemical compaction method was employed to synthesize highly dense and transparent collagen matrices...
October 6, 2016: Biomedical Materials
Somayeh Tavana, Mahnaz Azarnia, Mojtaba Rezazadeh Valojerdi, Abdolhossein Shahverdi
One of the problems encountered during ovarian transplantation is that the number of primordial follicles in the grafts is considerably reduced 2 d after transplantation due to post-transplantation ischemia. This study investigates if the use of hyaluronic acid-based hydrogel (HABH) with and without vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF) could prevent or minimize ischemia-induced follicle loss during ovarian autotransplantation and thereby restore ovarian tissue function in the rat model...
October 6, 2016: Biomedical Materials
Myron Spector
No abstract text is available yet for this article.
October 6, 2016: Biomedical Materials
Karamveer Birthare, Mozhgan Shojaee, Carlos Gross Jones, James R Brenner, Chris A Bashur
Modulating the host response, including the accumulation of oxidized lipid species, is important for improving tissue engineered vascular graft (TEVG) viability. Accumulation of oxidized lipids promotes smooth muscle cell (SMC) hyper-proliferation and inhibits endothelial cell migration, which can lead to several of the current challenges for small-diameter TEVGs. Generating biomaterials that reduce lipid oxidation is important for graft survival and this assessment can provide a reliable correlation to clinical situations...
April 2016: Biomedical Materials
Elena Maria Varoni, Lina Altomare, Andrea Cochis, Arash GhalayaniEsfahani, Alberto Cigada, Lia Rimondini, Luigi De Nardo
Neo-vascularization is a key factor in tissue regeneration within porous scaffolds. Here, we tested the hypothesis that micro-patterned scaffolds, with precisely-designed, open micro-channels, might help endothelial cells to produce intra-scaffold vascular networks. Three series of micro-patterned scaffolds were produced via electrochemical replica-deposition of chitosan and cross-linking. All had regularly-oriented micro-channels (ϕ 500 μm), which differed for the inter-channel spacing, at 600, 700, or 900 μm, respectively...
April 2016: Biomedical Materials
Edgardo Rivera-Delgado, Zhina Sadeghi, Nick X Wang, Jonathan Kenyon, Sapna Satyanarayan, Michael Kavran, Chris Flask, Adonis Z Hijaz, Horst A von Recum
The protein chemokine (C-C motif) ligand 7 (CCL7) is significantly over-expressed in urethral and vaginal tissues immediately following vaginal distention in a rat model of stress urinary incontinence. Further evidence, in this scenario and other clinical scenarios, indicates CCL7 stimulates stem cell homing for regenerative repair. This CCL7 gradient is likely absent or compromised in the natural repair process of women who continue to suffer from SUI into advanced age. We evaluated the feasibility of locally providing this missing CCL7 gradient by means of an affinity-based implantable polymer...
April 2016: Biomedical Materials
Jixing Ye, Jing Wang, Yunxiao Zhu, Qiang Wei, Xin Wang, Jian Yang, Shengli Tang, Hao Liu, Jiaming Fan, Fugui Zhang, Evan M Farina, Maryam K Mohammed, Yulong Zou, Dongzhe Song, Junyi Liao, Jiayi Huang, Dan Guo, Minpeng Lu, Feng Liu, Jianxiang Liu, Li Li, Chao Ma, Xue Hu, Rex C Haydon, Michael J Lee, Russell R Reid, Guillermo A Ameer, Li Yang, Tong-Chuan He
Successful bone tissue engineering requires at the minimum sufficient osteoblast progenitors, efficient osteoinductive factors, and biocompatible scaffolding materials. We previously demonstrated that bone morphogenetic protein 9 (BMP9) is one of the most potent factors in inducing osteogenic differentiation of mesenchymal stem cells (MSCs). Here, we investigated the potential use of a biodegradable citrate-based thermosensitive macromolecule, poly(polyethyleneglycol citrate-co-N-isopropylacrylamide) (PPCN) mixed with gelatin (PPCNG) as a scaffold for the delivery of BMP9-stimulated MSCs to promote localized bone formation...
April 2016: Biomedical Materials
Lindsey M Ott, Taylor A Zabel, Natalie K Walker, Ashley L Farris, Jason T Chakroff, Devan G Ohst, Jed K Johnson, Steven H Gehrke, Robert A Weatherly, Michael S Detamore
Tracheal stenosis can become a fatal condition, and current treatments include augmentation of the airway with autologous tissue. A tissue-engineered approach would not require a donor source, while providing an implant that meets both surgeons' and patients' needs. A fibrous, polymeric scaffold organized in gradient bilayers of polycaprolactone (PCL) and poly-lactic-co-glycolic acid (PLGA) with 3D printed structural ring supports, inspired by the native trachea rings, could meet this need. The purpose of the current study was to characterize the tracheal scaffolds with mechanical testing models to determine the design most suitable for maintaining a patent airway...
April 2016: Biomedical Materials
Ching-Wen Li, Wei-Ting Pan, Jyh-Cherng Ju, Gou-Jen Wang
In this study, we have developed a microporous poly(lactic-co-glycolic acid) (PLGA) scaffold that combines a continuous release property and a three-dimensional (3D) scaffolding technique for the precise and efficient formation of endothelial cell lineage from embryonic stem cells (ESCs). Eight PLGA scaffolds (14.29%, 16.67%, 20% and 25% concentrations of PLGA solutions) mixed with two crystal sizes of sodium chloride (NaCl) were fabricated by leaching. Then, vascular endothelial cell conditioned medium (ECCM) mixed with gelatin was embedded into the scaffold for culturing of mouse embryonic stem cells (mESCs)...
April 2016: Biomedical Materials
Maumita Bhattacharjee, Shikha Chawla, Shibu Chameettachal, Sumit Murab, Neel Sarovar Bhavesh, Sourabh Ghosh
Strategies for tissue engineering focus on scaffolds with tunable structure and morphology as well as optimum surface chemistry to simulate the anatomy and functionality of the target tissue. Silk fibroin has demonstrated its potential in supporting cartilaginous tissue formation both in vitro and in vivo. In this study, we investigate the role of controlled lamellar organization and chemical composition of biofunctionalized silk scaffolds in replicating the structural properties of the annulus region of an intervertebral disc using articular chondrocytes...
April 2016: Biomedical Materials
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"