Add like
Add dislike
Add to saved papers

A Computational Investigation of the Effects of Temporal Synchronization of Left Ventricular Assist Device Speed Modulation with the Cardiac Cycle on Intraventricular Hemodynamics.

Patients with advanced heart failure are implanted with a left ventricular assist device (LVAD) as a bridge-to-transplantation or destination therapy. Despite advances in pump design, the risk of stroke remains high. LVAD implantation significantly alters intraventricular hemodynamics, where regions of stagnation or elevated shear stresses promote thrombus formation. Third generation pumps incorporate a pulsatility mode that modulates rotational speed of the pump to enhance in-pump washout. We investigated how the timing of the pulsatility mode with the cardiac cycle affects intraventricular hemodynamic factors linked to thrombus formation. Computational fluid dynamics simulations with Lagrangian particle tracking to model platelet behavior in a patient-specific left ventricle captured altered intraventricular hemodynamics due to LVAD implantation. HeartMate 3 incorporates a pulsatility mode that modulates the speed of the pump every two seconds. Four different timings of this pulsatility mode with respect to the cardiac cycle were investigated. A strong jet formed between the mitral valve and inflow cannula. Blood stagnated in the left ventricular outflow tract beneath a closed aortic valve, in the near-wall regions off-axis of the jet, and in a large counterrotating vortex near the anterior wall. Computational results showed good agreement with particle image velocimetry results. Synchronization of the pulsatility mode with peak systole decreased stasis, reflected in the intraventricular washout of virtual contrast and Lagrangian particles over time. Temporal synchronization of HeartMate 3 pulsatility with the cardiac cycle reduces intraventricular stasis and could be beneficial for decreasing thrombogenicity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app