Add like
Add dislike
Add to saved papers

Simultaneous Spin Coating and Ring-Opening Metathesis Polymerization for the Rapid Synthesis of Polymer Films.

We report a highly controlled technique for the synthesis of polymer films atop a substrate by combining spin coating with ring-opening metathesis polymerization (ROMP), herein termed spin coating ROMP (scROMP). The scROMP approach combines polymer synthesis and deposition into one process, fabricating films of up to 36 cm2 in under 3 min with orders-of-magnitude reduction in solvent usage. This method can convert numerous norbornene-type molecules into homopolymers and random copolymers as uniform films on both porous and nonporous substrates. Film thickness can be varied from a few hundred nanometers to a few tens of micrometers based on spin speed and monomer concentration. The resulting polymers possess high M W (>100 kDa) and low polydispersity (PDI) (<1.2) values that are similar to ROMP polymers made in solution. We also devise a model to investigate the balance between convective monomer spin-off and polymer growth from the surface, which allows the determination of critical kinetic parameters for scROMP. Finally, translation of scROMP to porous supports enables the synthesis of thin film composite membranes that demonstrate the ability to dehydrate ethanol by pervaporation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app