Add like
Add dislike
Add to saved papers

Coherent activity within and between hemispheres: cortico-cortical connectivity revealed by rTMS of the right posterior parietal cortex.

INTRODUCTION: Low frequency (1 Hz) repetitive transcranial stimulation (rTMS) applied over right posterior parietal cortex (rPPC) has been shown to reduce cortical excitability both of the stimulated area and of the interconnected contralateral homologous areas. In the present study, we investigated the whole pattern of intra- and inter-hemispheric cortico-cortical connectivity changes induced by rTMS over rPPC.

METHODS: To do so, 14 healthy participants underwent resting state EEG recording before and after 30 min of rTMS at 1 Hz or sham stimulation over the rPPC (electrode position P6). Real stimulation was applied at 90% of motor threshold. Coherence values were computed on the electrodes nearby the stimulated site (i.e., P4, P8, and CP6) considering all possible inter- and intra-hemispheric combinations for the following frequency bands: delta (0.5-4 Hz), theta (4-8 Hz), alpha (8-12Hz), low beta (12-20 Hz), high beta (20-30 Hz), and gamma (30-50 Hz).

RESULTS AND DISCUSSION: Results revealed a significant increase in coherence in delta, theta, alpha and beta frequency bands between rPPC and the contralateral homologous sites. Moreover, an increase in coherence in theta, alpha, beta and gamma frequency bands was found between rPPC and right frontal sites, reflecting the activation of the fronto-parietal network within the right hemisphere. Summarizing, subthreshold rTMS over rPPC revealed cortico-cortical inter- and intra-hemispheric connectivity as measured by the increase in coherence among these areas. Moreover, the present results further confirm previous evidence indicating that the increase of coherence values is related to intra- and inter-hemispheric inhibitory effects of rTMS. These results can have implications for devising evidence-based rehabilitation protocols after stroke.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app