Add like
Add dislike
Add to saved papers

Evaluation of the potential of Delta-aminolevulinic acid for simultaneous detection of bioburden and anti-microbial photodynamic therapy of MRSA infected wounds in Swiss albino mice.

BACKGROUND: The dramatic increase of drug-resistant bacteria necessitates urgent development of platforms to simultaneously detect and inactivate bacteria causing wound infections, but are confronted with various challenges. Delta amino levulinic acid (ALA) induced protoporphyrin IX (PpIX) can be a promising modality for simultaneous bioburden diagnostics and therapeutics. Herein, we report utility of ALA induced protoporphyrin (PpIX) based simultaneous bioburden detection, photoinactivation and therapeutic outcome assessment in methicillin resistant Staphylococcus aureus (MRSA) infected wounds of mice.

METHODS: MRSA infected wounds treated with 10% ALA were imaged with help of a blue LED (∼405 nm) based, USB powered, hand held device integrated with a modular graphic user interface (GUI). Effect of ALA application time, bacteria load, post bacteria application time points on wound fluorescence studied. PpIX fluorescence observed after excitation with blue LEDs was used to detect bioburden, start red light mediated antimicrobial photodynamic therapy (aPDT), determine aPDT effectiveness and assess selectivity of the approach.

RESULTS: ALA-PpIX fluorescence of wound bed discriminates infected from uninfected wounds and detects clinically relevant load. While wound fluorescence pattern changes as a function of ALA incubation and post infection time, intra-wound inhomogeneity in fluorescence correlates with the Gram staining data on presence of biofilms foci. Lack of red fluorescence from wound granulation tissue treated with ALA suggests selectivity of the approach. Further, significant reduction (∼50%) in red fluorescence, quantified using the GUI, relates well with bacteria load reduction observed post topical aPDT.

CONCLUSION: The potential of ALA induced PpIX for simultaneous detection of bioburden, photodynamic inactivation and "florescence-guided aPDT assessment" is demonstrated in MRSA infected wounds of mice.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app