Add like
Add dislike
Add to saved papers

Diagnostic accuracy of thermal, hydration, and heart rate assessments in discriminating positive acute kidney injury risk following physical work in the heat.

Occupational heat stress increases the risk of acute kidney injury (AKI). This study presents a secondary analysis to generate novel hypotheses for future studies by investigating the diagnostic accuracy of thermal, hydration, and heart rate assessments in discriminating positive AKI risk following physical work in the heat in unacclimatized individuals. Unacclimatized participants ( n  = 13, 3 women, age: ∼23 years) completed four trials involving 2 h of exercise in a 39.7 ± 0.6 °C, 32 ± 3% relative humidity environment that differed by experimental manipulation of hyperthermia (i.e., cooling intervention) and dehydration (i.e., water drinking). Diagnostic accuracy was assessed via receiver operating characteristic curve analysis. Positive AKI risk was identified when the product of concentrations insulin-like growth factor binding protein 7 and tissue inhibitor of metalloproteinase-2 [IGFBP7∙TIMP-2] exceeded 0.3 (ng∙mL-1 )2 ∙1000-1 . Peak absolute core temperature had the acceptable discriminatory ability (AUC = 0.71, p  = 0.009), but a relatively large variance (AUC 95% CI: 0.57-0.86). Mean body temperature, urine specific gravity, urine osmolality, peak heart rate, and the peak percent of both maximum heart rate and heart rate reserve had poor discrimination (AUC = 0.66-0.69, p  ≤ 0.051). Mean skin temperature, percent change in body mass and plasma volume, and serum sodium and osmolality had no discrimination ( p  ≥ 0.072). A peak increase in mean skin temperature of >4.7 °C had a positive likelihood ratio of 11.0 which suggests clinical significance. These data suggest that the absolute value of peak core temperature and the increase in mean skin temperature may be valuable to pursue in future studies as a biomarker for AKI risk in unacclimatized workers.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app