Add like
Add dislike
Add to saved papers

An ultrasensitive electrochemical immunosensor based on meso-PdN NCs and Au NPs/N-CNTs for quantitative cTnI detection.

Bioelectrochemistry 2024 March 9
Electrochemical immunosensors have gained considerable attention in detecting human disease markers due to their excellent specificity, high sensitivity, and facile operation. Herein, a rational-designed sandwich-type electrochemical immunosensor is constructed for the sensitive detection of cardiac troponin I (cTnI) using nitrogen-doped carbon nanotubes loaded with gold nanoparticles (Au NPs/N-CNTs) as substrate and highly active mesoporous palladium-nitrogen nanocubes (meso-PdN NCs) as secondary antibody markers. Benefitting from its large specific surface area (638.04 m2 g-1 ) and high nitrogen content, novel polydopamine (PDA)/ halloysite nanotubes (HNTs) hybrid derived one-dimensional (1D) N-CNTs can provide more binding sites for the in-situ growth of Au NPs to connect Ab1 . Furthermore, as an ideal substrate material, Au NPs/N-CNTs exhibit finely tuned mesoporous structures and outstanding conductivity, which facilitate the mass and electron transfer during the electrocatalysis process. Besides, highly concave surfaces and crystalline mesopores of meso-PdN NCs expose more surfaces and crevices, providing abundant reactive sites for H2 O2 reduction. Remarkably, the as-obtained immunosensor presented a wide linear range (from 10 fg mL-1 to 100 ng mL-1 ) and an excellent low detection limit (9.85 fg mL-1 ). This study may offer new insights into the precise fabrication of efficient electrochemical immunosensors for various clinical diagnosis applications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app