Add like
Add dislike
Add to saved papers

Lactate infusion elevates cardiac output through increased heart rate and decreased vascular resistance: a randomised, blinded, crossover trial in a healthy porcine model.

BACKGROUND: Lactate is traditionally recognized as a by-product of anaerobic metabolism. However, lactate is a preferred oxidative substrate for stressed myocardium. Exogenous lactate infusion increases cardiac output (CO). The exact mechanism underlying this mechanism has yet to be elucidated. The aim of this study was to investigate the cardiovascular mechanisms underlying the acute haemodynamic effects of exogenous lactate infusion in an experimental model of human-sized pigs.

METHODS: In this randomised, blinded crossover study in eight 60-kg-pigs, the pigs received infusions with one molar sodium lactate and a control infusion of tonicity matched hypertonic saline in random order. We measured CO and pulmonary pressures using a pulmonary artery catheter. A pressure-volume admittance catheter in the left ventricle was used to measure contractility, afterload, preload and work-related parameters.

RESULTS: Lactate infusion increased circulating lactate levels by 9.9 mmol/L (95% confidence interval (CI) 9.1 to 11.0) and CO by 2.0 L/min (95% CI 1.2 to 2.7). Afterload decreased as arterial elastance fell by  -1.0 mmHg/ml (95% CI  -2.0 to  -0.1) and systemic vascular resistance decreased by  -548 dynes/s/cm5 (95% CI  -261 to  -835). Mixed venous saturation increased by 11 percentage points (95% CI 6 to 16), whereas ejection fraction increased by 16.0 percentage points (95% CI 1.1 to 32.0) and heart rate by 21 bpm (95% CI 8 to 33). No significant changes in contractility nor preload were observed.

CONCLUSION: Lactate infusion increased cardiac output by increasing heart rate and lowering afterload. No differences were observed in left ventricular contractility or preload. Lactate holds potential as a treatment in situations with lowered CO and should be investigated in future clinical studies.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app