Add like
Add dislike
Add to saved papers

A dynamic model of growth phase of bio-conversion of methane to polyhydroxybutyrate using dynamic flux balance analysis.

Biological conversion of waste methane to biodegradable plastics is a way of reducing their production cost. This study addresses the computational modeling of the growth phase reactor of the process of polyhydroxybutyrate production. The model was used for investigating the effect of gas recycling and inlet gas retention time on the reactor performance. The model was run by the use of a genome-scale metabolic network of Methylocystis hirsuta in a dynamic flux balance analysis framework. The reactor has been modeled for two separate feeding scenarios: a pure methane feed and a biogas feed. The mass transfer coefficient parameter was predicted as a function of superficial gas velocities by the regression of data from published experiments. The results show an increase of removal efficiency by 38% and biomass concentration by 2.8 g/L with the increase of gas recycle ratio from 0 to 30 at the empty bed residence time of 60  min .

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app