Add like
Add dislike
Add to saved papers

Regulate transportation of ions and polysulfides in all-solid-state Li-S batteries using ordered-MOF composite solid electrolyte.

Science Advances 2024 March 16
A dilemma arises when striving to balance the maximum desired ion conductivity and minimize the undesired lithium polysulfide shuttling effect for all-solid-state lithium-sulfur batteries (ASSLSBs). Here, we introduce a strategy of using ordered MIL-125-NH2 as fillers for poly(ethylene oxide)-based electrolytes to simultaneously regulate the transportation of lithium ions and polysulfides. When compared to electrolytes lacking metal-organic frameworks (MOFs) and those containing disordered MOFs, the electrolyte featuring an ordered-MOF structure, denoted as three-dimensional (3D) MPPL composite solid electrolyte (CSE), exhibits the highest ion conductivity of 8.3 × 10-4 siemens per centimeter at 60°C. As a result, pouch-type ASSLSBs with 3D MPPL CSE maintains stable cycling for 400 cycles at 0.5 C at 60°C, showcasing the successful implementation of this strategy in simultaneously regulating ion and polysulfide transport. This approach opens up alternative avenues to achieve high-performance ASSLSBs with exceptional energy density.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app