Add like
Add dislike
Add to saved papers

Nuclear translocation of metabolic enzyme PKM2 participates in high glucose-promoted HCC metastasis by strengthening immunosuppressive environment.

Redox Biology 2024 March 5
Although some cohort studies have indicated a close association between diabetes and HCC, the underlying mechanism about the contribution of diabetes to HCC progression remains largely unknown. In the study, we applied a novel HCC model in SD rat with diabetes and a series of high glucose-stimulated cell experiments to explore the effect of a high glucose environment on HCC metastasis and its relevant mechanism. Our results uncovered a novel regulatory mechanism by which nuclear translocation of metabolic enzyme PKM2 mediated high glucose-promoted HCC metastasis. Specifically, high glucose-increased PKM2 nuclear translocation downregulates chemerin expression through the redox protein TRX1, and then strengthens immunosuppressive environment to promote HCC metastasis. To the best of our knowledge, this is the first report to elucidate the great contribution of a high glucose environment to HCC metastasis from a new perspective of enhancing the immunosuppressive microenvironment. Simultaneously, this work also highlights a previously unidentified non-metabolic role of PKM2 and opens a novel avenue for cross research and intervention for individuals with HCC and comorbid diabetes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app