Add like
Add dislike
Add to saved papers

Enhancing Vault Prediction and ICL Sizing Through Advanced Machine Learning Models.

PURPOSE: To use artificial intelligence (AI) technology to accurately predict vault and Implantable Collamer Lens (ICL) size.

METHODS: The methodology focused on enhancing predictive capabilities through the fusion of machine-learning algorithms. Specifically, AdaBoost, Random Forest, Decision Tree, Support Vector Regression, LightGBM, and XGBoost were integrated into a majority-vote model. The performance of each model was evaluated using appropriate metrics such as accuracy, precision, F1-score, and area under the curve (AUC).

RESULTS: The majority-vote model exhibited the highest performance among the classification models, with an accuracy of 81.9% area under the curve (AUC) of 0.807. Notably, LightGBM (accuracy = 0.788, AUC = 0.803) and XGBoost (ACC = 0.790, AUC = 0.801) demonstrated competitive results. For the ICL size prediction, the Random Forest model achieved an impressive accuracy of 85.3% (AUC = 0.973), whereas XG-Boost (accuracy = 0.834, AUC = 0.961) and LightGBM (accuracy = 0.816, AUC = 0.961) maintained their compatibility.

CONCLUSIONS: This study highlights the potential of diverse machine learning algorithms to enhance postoperative vault and ICL size prediction, ultimately contributing to the safety of ICL implantation procedures. Furthermore, the introduction of the novel majority-vote model demonstrates its capability to combine the advantages of multiple models, yielding superior accuracy. Importantly, this study will empower ophthalmologists to use a precise tool for vault prediction, facilitating informed ICL size selection in clinical practice. [ J Refract Surg . 2024;40(3):e126-e132.] .

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app