Add like
Add dislike
Add to saved papers

Enhancing malignancy prediction in thyroid nodules: A multimodal ultrasound radiomics approach in TI-RADS category 4 lesions.

PURPOSE: To explore the diagnostic value of intralesional and perilesional radiomics based on multimodal ultrasound (US) images in predicting the malignant ACR TIRADS 4 thyroid nodules (TNs).

METHODS: A total of 297 cases of TNs in patients who underwent preoperative thyroid grayscale US and shear wave elastography (STE) were enrolled (training cohort: n = 150, internal validation cohort: n = 77, external validation cohort: n = 70). Regions of interests (ROIs) were delineated on grayscale US images and STE images, and then an isotropic expansion of 1.0, 1.5, 2.0, 2.5, and 3.0 mm was applied. Predictive models were established using recursive feature elimination-support vector machines (RFE-SVM) based on radiomics features calculated by random forest.

RESULTS: The perilesional ROI1.5mm expansion achieved the highest area under curve (AUC) (AUC: 0.753 for grayscale US, 0.728 for STE; 95% confidence interval (CI): 0.664-0.743, 0.684-0.739, respectively). The joint model had the highest AUC values of 0.936 in the training dataset, 0.926 in internal dataset, and 0.893 in external dataset. The calibration curve showed good consistency and the decision curve indicated a greater clinical net benefit of the joint model.

CONCLUSION: Joint model containing perilesional radiomics (1.5 mm) had significant value in predicting the malignant ACR TIRADS 4 TNs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app