Add like
Add dislike
Add to saved papers

Influence of a pro-inflammatory stimulus on the miRNA and lipid content of human dental stem cell-derived extracellular vesicles and their impact on microglial activation.

Heliyon 2024 March 16
Neuro-inflammation occurs in numerous disorders such as multiple sclerosis, Alzheimer's disease and Parkinson's disease. However, anti-inflammatory drugs for the central nervous system have failed to show significant improvement when compared to a placebo in clinical trials. Our previous work demonstrated that stem cells from the apical papilla (SCAP) can decrease neuro-inflammation and stimulate oligodendrocyte progenitor cell differentiation. One hypothesis is that the therapeutic effect of SCAP could be mediated by their secretome, including extracellular vesicles (EV). Here, our objectives were to characterize SCAP-EV and to study their effect on microglial cells. We isolated EV from non-activated SCAP and from SCAP activated with TNFα and IFN-γ and characterized them according to their size, EV markers, miRNA and lipid content. Their ability to decrease pro-inflammatory cytokine expression in vitro and ex vivo was also assessed. We showed that the miRNA content was impacted by a pro-inflammatory environment but not their lipid composition. SCAP-EV reduced the expression of pro-inflammatory markers in LPS-activated microglial cells while their effect was limited on mouse spinal cord sections. In conclusion, we were able to isolate EV from SCAP, to show that their miRNA content was impacted by a pro-inflammatory stimulus, and to describe that SCAP-EV and not the protein fraction of conditioned medium could reduce pro-inflammatory marker expression in LPS-activated BV2 cells.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app