Add like
Add dislike
Add to saved papers

TP53 mitigates cisplatin resistance in non-small cell lung cancer by mediating the effects of resistant cell-derived exosome mir-424-5p.

Heliyon 2024 March 16
BACKGROUND: Cisplatin (DDP) is the principal agent used for chemotherapy in patients with non-small cell lung cancer (NSCLC). Nevertheless, DDP resistance is an essential cause for a worse prognosis of patient. Therefore, this study proposes to discover features of miR-424-5p in DDP resistance of NSCLC.

METHOD: After exogenous modulation of miR-424-5p expression, A549 cell activity was measured using CCK-8 and flow cytometry. A549/DDP and A549/DDP-associated subcutaneous tumor model were constructed to investigate the effect of miR-424-5p on DDP resistance in NSCLC in vivo . TargetScan and JASPAR databases predicted the potential molecular mechanism of miR-424-5p. A549-and A549/DDP-derived exosomes were isolated and characterized using a transmission electron microscope and nanoparticle tracking analysis.

RESULT: Overexpression of miR-424-5p facilitated proliferation and DDP resistance in A549 cells, and knockdown of miR-424-5p did the opposite. Knockdown of miR-424-5p enhanced DDP restriction on tumor weight and volume. Moreover, SOCS5 and SOCS56 (SOCS5/6) were downstream targets of miR-424-5p. miR-424-5p down-regulated SOCS5/6 expression to activate JAK2/STAT3 and PI3K/AKT pathways. Notably, tumor protein p53 (TP53) is a transcription factor for the miR-424-5p host gene, as confirmed by the dual-luciferase reporter gene. Cellular and animal experiments indicated that TP53 limited the regulatory function of miR-424-5p on NSCLC growth, DDP resistance, and related molecules. Interestingly, miR-424-5p was markedly enriched in A549/DDP cell-derived exosomes than in A549 cell-derived exosomes, and TP53 down-regulated miR-424-5p expression in A549/DDP cell-derived exosomes.

CONCLUSION: DDP-resistant cell-derived exosome miR-424-5p contributes to NSCLC growth and DDP resistance by targeting SOCS5 and SOCS6 to activate JAK2/STAT3 and PI3K/AKT pathways, which are blocked by TP53.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app