Add like
Add dislike
Add to saved papers

Innovative freeze-drying technique in the fabrication of dissolving microneedle patch: Enhancing transdermal drug delivery efficiency.

Microneedle patch (MNP) has become a hot research topic in the field of transdermal drug delivery due to its ability to overcome the stratum corneum barrier. Among the various types of microneedles, dissolving microneedles represent one of the most promising transdermal delivery methods. However, the most used method for preparing dissolving microneedles, namely microfabrication, suffers from issues such as long drying time, susceptibility to humidity, and large batch-to-batch variability, which limit the development of dissolving microneedles. In this study, we report for the first time a method for preparing dissolving microneedles using freeze-drying technology. We screened substrates suitable for freeze-dried microneedle patch (FD-MNP) and used coating technology to enhance the mechanical strength of FD-MNP, allowing them to meet the requirements for skin penetration. We successfully prepared FD-MNP using hyaluronic acid as the substrate and insulin as the model drug. Scanning electron microscopy revealed that the microneedles had a porous structure. After coating, the mechanical strength of the microneedles was 0.61 N/Needle, and skin penetration rate was 97%, with a penetration depth of 215 μm. The tips of the FD-MNP dissolved completely within approximately 60 s after skin penetration, which is much faster than conventional MNP (180 s). In vitro transdermal experiments showed that the FD-MNP shortened the lag time for transdermal delivery of rhodamine 123 and insulin compared to conventional MNP, indicating a faster transdermal delivery rate. Pharmacological experiments showed that the FD-MNP lowered mouse blood glucose levels more effectively than conventional MNP, with a relative pharmacological availability of 96.59 ± 2.84%, higher than that of conventional MNP (84.34 ± 3.87%), P = 0.0095. After storage under 40℃ for two months, the insulin content within the FD-MNP remained high at 95.27 ± 4.46%, which was much higher than that of conventional MNP (58.73 ± 3.71%), P < 0.0001. In conclusion, freeze-drying technology is a highly valuable method for preparing dissolving microneedles with potential applications in transdermal drug delivery.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app