Add like
Add dislike
Add to saved papers

Identification of cuproptosis-related lncRNAs with the significance in prognosis and immunotherapy of oral squamous cell carcinoma.

Cuproptosis, a recently characterized programmed cell death mechanism, has emerged as a potential contributor to tumorigenesis, metastasis, and immune modulation. Long non-coding RNAs (lncRNAs) have demonstrated diverse regulatory roles in cancer and hold promise as biomarkers. However, the involvement and prognostic significance of cuproptosis-related lncRNAs (CRLs) in oral squamous cell carcinoma (OSCC) remain poorly understood. Based on TCGA-OSCC data, we integrated single-sample gene set enrichment analysis (ssGSEA), the LASSO algorithm, and the tumor immune dysfunction and exclusion (TIDE) algorithm. We identified 11 CRLs through differential expression, Spearman correlation, and univariate Cox regression analyses. Two distinct CRL-related subtypes were unveiled, delineating divergent survival patterns, tumor microenvironments (TME), and mutation profiles. A robust CRL-based signature (including AC107027.3, AC008011.2, MYOSLID, AC005785.1, AC019080.5, AC020558.2, AC025265.1, FAM27E3, and LINC02367) prognosticated OSCC outcomes, immunotherapy responses, and anti-tumor strategies. Superior predictive power compared to other lncRNA models was demonstrated. Functional assessments confirmed the influence of FAM27E3, LINC02367, and MYOSLID knockdown on OSCC cell behaviors. Remarkably, the CRLs-based signature maintained stability across OSCC patient subgroups, underscoring its clinical potential for survival prediction. This study elucidates CRLs' roles in TME of OSCC and establishes a potential signature for precision therapy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app