Add like
Add dislike
Add to saved papers

Multicentre validation of a machine learning model for predicting respiratory failure after noncardiac surgery.

BACKGROUND: Postoperative respiratory failure is a serious complication that could benefit from early accurate identification of high-risk patients. We developed and validated a machine learning model to predict postoperative respiratory failure, defined as prolonged (>48 h) mechanical ventilation or reintubation after surgery.

METHODS: Easily extractable electronic health record (EHR) variables that do not require subjective assessment by clinicians were used. From EHR data of 307,333 noncardiac surgical cases, the model, trained with a gradient boosting algorithm, utilised a derivation cohort of 99,025 cases from Seoul National University Hospital (2013-9). External validation was performed using three separate cohorts A-C from different hospitals comprising 208,308 cases. Model performance was assessed by area under the receiver operating characteristic (AUROC) curve and area under the precision-recall curve (AUPRC), a measure of sensitivity and precision at different thresholds.

RESULTS: The model included eight variables: serum albumin, age, duration of anaesthesia, serum glucose, prothrombin time, serum creatinine, white blood cell count, and body mass index. Internally, the model achieved an AUROC of 0.912 (95% confidence interval [CI], 0.908-0.915) and AUPRC of 0.113. In external validation cohorts A, B, and C, the model achieved AUROCs of 0.879 (95% CI, 0.876-0.882), 0.872 (95% CI, 0.870-0.874), and 0.931 (95% CI, 0.925-0.936), and AUPRCs of 0.029, 0.083, and 0.124, respectively.

CONCLUSIONS: Utilising just eight easily extractable variables, this machine learning model demonstrated excellent discrimination in both internal and external validation for predicting postoperative respiratory failure. The model enables personalised risk stratification and facilitates data-driven clinical decision-making.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app