Add like
Add dislike
Add to saved papers

Calcitriol attenuates lipopolysaccharide-induced neuroinflammation and depressive-like behaviors by suppressing the P2X7R/NLRP3/caspase-1 pathway.

Psychopharmacology 2024 Februrary 28
RATIONALE: Microglia-mediated neuroinflammation is a vital hallmark in progression of depression, while calcitriol exerts anti-inflammatory effects in the brain. The activation of the P2X7 receptor has an important link to neuroinflammation. However, it is unclear whether calcitriol treatment exerts anti-inflammatory effects in association with P2X7R activation.

OBJECTIVE: In this study, we assessed the antidepressive and neuroprotective effects of calcitriol on lipopolysaccharide (LPS)-mediated depressive-like behavior, neuroinflammation, and neuronal damage.

METHODS: In in vitro experiments, the BV2 cells were exposed to LPS, and the protective effects of calcitriol were assessed. For in vivo experiment, thirty-two male C57BL/6 mice were divided into four groups of control, calcitriol, LPS and LPS + calcitriol. Calcitriol was administered at 1 µg/kg for 14 days and LPS at 1 mg/kg once every other day for 14 days. The control group mice were given equal volumes of vehicles. All treatments were delivered intraperitoneally.

RESULTS: The in vitro experiments showed calcitriol inhibited the release of inflammatory mediators induced by LPS in BV2 cells. The in vivo experiments revealed that calcitriol alleviated LPS-induced behavioral abnormalities and spatial learning impairments. Moreover, calcitriol treatment reduced the mRNA levels of pro-inflammatory cytokines, while increasing anti-inflammatory cytokine levels in the hippocampus. Our results further revealed that calcitriol administration attenuated LPS-induced microglia activation by suppressing P2X7R/NLRP3/caspase-1 signaling. Moreover, calcitriol inhibited apoptosis of neurons in the hippocampus as evidenced by expression of apoptosis-related proteins and TUNEL assay.

CONCLUSIONS: Collectively, our findings demonstrated that calcitriol exerts antidepressive and neuroprotective effects through the suppression of the P2X7R/NLRP3/caspase-1 pathway both in LPS-induced inflammation models in vitro and in vivo.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app