Add like
Add dislike
Add to saved papers

A decreased impact of air pollution on hospital pneumonia visits during COVID-19 outbreak in northeastern Thailand.

BACKGROUND: The coronavirus disease 2019 (COVID-19) pandemic had effects on changes in people, society, and pollutant sources. This was a unique research opportunity to assess the effects on the risk of pneumonia resulted from the changes in air pollution and personal hygiene regarding city lockdown.

METHODS: This study, we estimated time-series relative risks (RRs) of pneumonia (n=94,288) associated with PM10 , PM2.5 , NO2 , and O3 in Khon Kaen province and its vicinity, using Poison regression with generalized additive model and compared air pollutant-associated risk of pneumonia before vs. during the COVID-19 outbreak [2018-2021].

RESULTS: During the COVID-19 period, pneumonia cases, PM2.5 , PM10 , and NO2 levels were lower than those before the COVID-19 but the O3 level was significantly higher. The single-pollutant analyses showed that the increase in PM10 , PM2.5 , and NO2 were significantly associated with pneumonia risks at single-day lag 0 in the earlier two years (2018-2019). For multi-pollutant analyses, there were higher RRs in PM2.5 at lag 0 [RR =1.078, 95% confidence interval (CI): 1.004 to 1.157], lag 4 (RR =1.054, 95% CI: 1.011 to 1.098) and lag 5 (RR =1.090, 95% CI: 1.021 to 1.165) and for all cumulative-day lags, greatest was at lag 0-5 (RR =1.314, 95% CI: 1.200 to 1.439) before the COVID-19 period while there were lower pneumonia RRs of a 10-µg/m3 increase in PM2.5 at single-day lag 1 (RR =1.064, 95% CI: 1.002 to 1.130) and for all cumulative-day lags, greatest was at lag 0-5 (RR =1.201, 95% CI: 1.073 to 1.344) during the COVID-19 outbreak. Multi-pollutant of NO2 significantly increased pneumonia risk in cumulative day exposure before the COVID-19 outbreak at lag 0-3 (RR =1.050, 95% CI: 1.001 to 1.100). It was significantly greater than that risk during the outbreak.

CONCLUSIONS: This study revealed that the lockdown measures to control COVID-19 were effective in improving air quality and lowering associated pneumonia risk. These findings would help raise awareness about measures and policies to preserve the air quality to increase respiratory health benefits.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app