Add like
Add dislike
Add to saved papers

CoT: Contourlet Transformer for Hierarchical Semantic Segmentation.

The Transformer-convolutional neural network (CNN) hybrid learning approach is gaining traction for balancing deep and shallow image features for hierarchical semantic segmentation. However, they are still confronted with a contradiction between comprehensive semantic understanding and meticulous detail extraction. To solve this problem, this article proposes a novel Transformer-CNN hybrid hierarchical network, dubbed contourlet transformer (CoT). In the CoT framework, the semantic representation process of the Transformer is unavoidably peppered with sparsely distributed points that, while not desired, demand finer detail. Therefore, we design a deep detail representation (DDR) structure to investigate their fine-grained features. First, through contourlet transform (CT), we distill the high-frequency directional components from the raw image, yielding localized features that accommodate the inductive bias of CNN. Second, a CNN deep sparse learning (DSL) module takes them as input to represent the underlying detailed features. This memory-and energy-efficient learning method can keep the same sparse pattern between input and output. Finally, the decoder hierarchically fuses the detailed features with the semantic features via an image reconstruction-like fashion. Experiments demonstrate that CoT achieves competitive performance on three benchmark datasets: PASCAL Context 57.21% mean intersection over union (mIoU), ADE20K (54.16% mIoU), and Cityscapes (84.23% mIoU). Furthermore, we conducted robustness studies to validate its resistance against various sorts of corruption. Our code is available at: https://github.com/yilinshao/CoT-Contourlet-Transformer.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app