Add like
Add dislike
Add to saved papers

Cytosolic Delivery of Bioactive Cyclic Peptide Cargo by Spontaneous Membrane Translocating Peptides.

ACS Omega 2024 Februrary 21
Cyclic peptides that inhibit protein-protein interactions have significant advantages over linear peptides and small molecules for modulating cellular signaling networks in cancer and other diseases. However, the permeability barrier of the plasma membrane remains a formidable obstacle to the development of cyclic peptides into applicable drugs. Here, we test the ability of a family of synthetically evolved spontaneous membrane translocating peptides (SMTPs) to deliver phalloidin, a representative bioactive cyclic peptide, to the cytosol of human cells in culture. Phalloidin does not enter cells spontaneously, but if delivered to the cytosol, it inhibits actin depolymerization. We thus use a wound-healing cell mobility assay to assess the biological activity of phalloidin conjugated to three SMTPs that we previously discovered. All three SMTPs can deliver phalloidin to the cell cytosol, and one does so at concentrations as low as 3 μM. Delivery occurs despite the fact that the SMTPs were originally selected based on membrane translocation with no cargo other than a small fluorescent dye. These results show that SMTPs are viable delivery vehicles for cyclic peptides, although their efficiency is moderate. Further, these results suggest that one additional generation of synthetic molecular evolution could be used to optimize SMTPs for the efficient delivery of any bioactive cyclic peptide into cells.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app