Add like
Add dislike
Add to saved papers

3D-Cobalt-Dicyanamide-Derived 2D-Layered-Co(OH) 2 -Based Catalyst for Light-Driven Hydrogen Evolution.

ACS Omega 2024 Februrary 21
Derivation of 3D coordination polymers to produce active catalysts has been a feasible strategy to achieve a precise coordination sphere for the catalytic site. This study demonstrates the partial conversion of a 3D cobalt dicyanamide coordination polymer, Co-dca, to a 2D layered hydroxide-oxyhydroxide structure under photocatalytic conditions. The catalyst exhibits an activity as high as 28.3 mmol h-1 g-1 in the presence of a [Ru(bpy)3 ]2+ /triethylamine (TEA) couple to maintain it for at least 12 h. Photocatalytic and characterization studies reveal that the dicyanamide ligand within the coordination polymer is crucial for governing modification and achieving a superior H2 evolution rate. Moreover, we observed the critical role of TEA as the hydrolyzing agent for the transformation process. This study displays that the metal dicyanamides can be utilized as templates for preparing active and robust catalysts.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app