Add like
Add dislike
Add to saved papers

Enhancement of the effect of novel targeted 5-aminolevulinic acid conjugated bismuth oxide nanoparticles-based photodynamic therapy by simultaneous Radiotherapy on KB cells.

BACKGROUND: Selective accumulation of photosensitizers into cancerous cells is one of the most important factors affecting photodynamic therapy (PDT) efficacy. 5-aminolevulinic acid (5-ALA) is the precursor of a strong photosensitizer, protoporphyrin-IX; but it has poor permeability into the cells. Folate receptors are overexpressed on the surface of many tumor cells. In the present study, folic acid (FA) and 5-ALA conjugated bismuth oxide nanoparticles were synthesized; and used in PDT, radiotherapy (RT), and concurrent PDT & RT against nasopharyngeal carcinoma (KB cell line).

METHODS: The KB cells were incubated with the synthesized nanoparticles (NPs) for 2 h; then illuminated using a custom-made LED lamp at the light dose of 26 J/cm2 . Irradiation of the cells was carried out using X-ray 6 MV (2 Gy); and synergistic effect of the simultaneous RT and PDT treatments was evaluated using fractional product values. Efficacy of the treatments was determined using MTT and Caspase-3 enzyme activity assays.

RESULTS: Targeting of folic acid receptors enables the selective endocytosis of the conjugated NPs. RT results in the presence of Bi2 O3 NPs showed a significant radiosensitizer potential of these NPs. Fractional product values of 1.49±0.05, 1.36±0.06, and 1.05±0.06 obtained in the presence of FA-5-ALA conjugated NPs, 5-ALA conjugated NPs, and in the absence of the NPs, respectively. Therefore, simultaneous RT and PDT in the presence of these conjugated NPs is superior to RT in the presence of the NPs.

CONCLUSION: Simultaneous PDT and RT in the presence of FA-5-ALA conjugated bismuth oxide NPs can be introduced as a promising therapeutic approach in controlling KB cancer cells.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app