Add like
Add dislike
Add to saved papers

The Study of Radioactive Contaminations within the Production Processes of Metal Titanium for Low-Background Experiments.

Materials 2024 Februrary 10
Ultra-low-radioactivity titanium alloys are promising materials for the manufacture of low-background detectors which are being developed for experiments in astroparticle physics and neutrino astrophysics. Structural titanium is manufactured on an industrial scale from titanium sponge. The ultra-low-background titanium sponge can be produced on an industrial scale with a contamination level of less than 1 mBq/kg of uranium and thorium isotopes. The pathways of contaminants during the industrial production of structural titanium were analyzed. The measurements were carried out using two methods: inductively coupled plasma mass spectroscopy (ICP-MS) and gamma spectroscopy using high-purity germanium detectors (HPGes). It was shown that the level of contamination with radioactive impurities does not increase during the remelting of titanium sponge and mechanical processing. We examined titanium alloy samples obtained at different stages of titanium production, namely an electrode compaction, a vacuum arc remelting with a consumable electrode, and a cold rolling of titanium sheets. We found out that all doped samples that were studied would be a source of uranium and thorium contamination in the final titanium alloys. It has been established that the only product allowed obtaining ultra-low-background titanium was the commercial VT1-00 alloy, which is manufactured without master alloys addition. The master alloys in the titanium production process were found cause U/Th contamination.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app