Journal Article
Review
Add like
Add dislike
Add to saved papers

Interpretable machine learning model to predict surgical difficulty in laparoscopic resection for rectal cancer.

BACKGROUND: Laparoscopic total mesorectal excision (LaTME) is standard surgical methods for rectal cancer, and LaTME operation is a challenging procedure. This study is intended to use machine learning to develop and validate prediction models for surgical difficulty of LaTME in patients with rectal cancer and compare these models' performance.

METHODS: We retrospectively collected the preoperative clinical and MRI pelvimetry parameter of rectal cancer patients who underwent laparoscopic total mesorectal resection from 2017 to 2022. The difficulty of LaTME was defined according to the scoring criteria reported by Escal. Patients were randomly divided into training group (80%) and test group (20%). We selected independent influencing features using the least absolute shrinkage and selection operator (LASSO) and multivariate logistic regression method. Adopt synthetic minority oversampling technique (SMOTE) to alleviate the class imbalance problem. Six machine learning model were developed: light gradient boosting machine (LGBM); categorical boosting (CatBoost); extreme gradient boost (XGBoost), logistic regression (LR); random forests (RF); multilayer perceptron (MLP). The area under receiver operating characteristic curve (AUROC), accuracy, sensitivity, specificity and F1 score were used to evaluate the performance of the model. The Shapley Additive Explanations (SHAP) analysis provided interpretation for the best machine learning model. Further decision curve analysis (DCA) was used to evaluate the clinical manifestations of the model.

RESULTS: A total of 626 patients were included. LASSO regression analysis shows that tumor height, prognostic nutrition index (PNI), pelvic inlet, pelvic outlet, sacrococcygeal distance, mesorectal fat area and angle 5 (the angle between the apex of the sacral angle and the lower edge of the pubic bone) are the predictor variables of the machine learning model. In addition, the correlation heatmap shows that there is no significant correlation between these seven variables. When predicting the difficulty of LaTME surgery, the XGBoost model performed best among the six machine learning models (AUROC=0.855). Based on the decision curve analysis (DCA) results, the XGBoost model is also superior, and feature importance analysis shows that tumor height is the most important variable among the seven factors.

CONCLUSIONS: This study developed an XGBoost model to predict the difficulty of LaTME surgery. This model can help clinicians quickly and accurately predict the difficulty of surgery and adopt individualized surgical methods.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app